首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
We present green methodologies for one‐pot and odourless syntheses of unsymmetric and symmetric diaryl sulfides via C─O bond activation using NiFe2O4 magnetic nanoparticles as a reusable heterogeneous nanocatalyst. The synthesis of unsymmetric sulfides is performed using the cross‐coupling reaction of phenolic esters such as acetates, triflates and tosylates with arylboronic acid/S8 or triphenyltin chloride/S8 as thiolating agents in the presence of base and NiFe2O4 magnetic nanoparticles as a catalyst in poly(ethylene glycol) as solvent at 60–85°C. Also, the synthesis of symmetric diaryl sulfides from phenolic compounds using S8 as the sulfur source and NiFe2O4 as catalyst in dimethylformamide at 120°C is described. Using these protocols, the syntheses of various unsymmetric and symmetric sulfides become easier than using the available protocols due to the use of a magnetically reusable bimetallic nanocatalyst and avoiding the use of thiols and aryl halides.  相似文献   

2.
A simple and efficient procedure has been developed for the synthesis of biologically relevant 2‐substituted benzimidazoles through a one‐pot condensation of o‐phenylenediamines with aryl aldehydes catalysed by iron oxide magnetic nanoparticles (Fe3O4 MNPs) in short reaction times with excellent yields. In the present study, Fe3O4 MNPs synthesized in a green manner using aqueous extract of white tea (Camelia sinensis) (Wt‐Fe3O4 MNPs) were applied as a magnetically separable heterogeneous nanocatalyst to synthesize 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole which has potential application in pharmacology and biological systems. Fourier transform infrared and NMR spectroscopies were used to characterize the 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole. In vitro cytotoxicity studies on MOLT‐4 cells showed a dose‐dependent toxicity with non‐toxic effect of 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole, up to a concentration of 0.147 µM. The green synthesized Wt‐Fe3O4 MNPs as recyclable nanocatalyst could be used for further research on the synthesis of therapeutic materials, particularly in nanomedicine, to assist in the treatment of cancer.  相似文献   

3.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

4.
A magnetically separable core–shell CoFe2O4@SiO2‐SO3H nanocatalyst has been successfully exploited as a heterogeneous acid catalyst in the synthesis of diversely substituted biologically important spiro fused pyrrolo/indolo[1,2‐a]quinoxaline derivatives through the condensation of N‐(2‐aminophenyl)pyrroles/indoles and various cyclic conjugated 1,2‐diones in ethanol under ultrasonic irradiation. Room temperature synthesis, short reaction time, wide substrate scope, good to excellent yield of products and use of a magnetically separable and recyclable nanocatalyst make this method attractive and practicable.  相似文献   

5.
Cu–S‐(propyl)‐2‐aminobenzothioate supported on functionalized Fe3O4 magnetic nanoparticles is reported as a reusable and highly efficient nanocatalyst for the one‐pot synthesis of polyhydroquinoline derivatives and also for selective oxidation of sulfides to sulfoxides. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, inductively coupled plasma atomic emission spectroscopy and atomic absorption spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Surface functionalization of magnetic nanoparticles is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. We have conveniently loaded sulfonic acid groups on amino‐functionalized Fe3O4 nanoparticles affording sulfamic acid‐functionalized magnetic Fe3O4 nanoparticles (MNPs/DAG‐SO3H) as an active and stable magnetically separable acidic nanocatalyst, which was characterized using X‐ray diffraction, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, vibrating sample magnetometry and elemental analysis. The catalytic activity of MNPs/DAG‐SO3H was probed through one‐pot synthesis of N‐substituted pyrroles from γ‐diketones and primary amines in aqueous phase at room temperature. The heterogeneous catalyst could be recovered easily by applying an external magnet device and reused many times without significant loss of its catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
《中国化学会会志》2017,64(11):1316-1325
A simple and efficient procedure for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles via the condensation of o‐phenylenediamine, o‐aminophenol, and o‐aminothiophenol with various benzaldehydes by using magnetic Co‐doped NiFe2O4 nanoparticles has been developed. This nanocatalyst has advantages such as excellent product yields, solvent‐free conditions, and very short reaction times. After any experiment, the magnetic nanocatalyst could be easily separated with the aid of an external magnet and reused at least four times without any loss of its catalytic performance.  相似文献   

8.
In the present work, a new protocol was introduced for the preparation of an efficient hybrid nanocatalyst ZnS‐ZnFe2O4 via the co‐precipitation method as well as its application in the synthesis of 2,4,5‐triaryl‐1H‐imidazoles derivatives starting from various aromatic aldehydes, benzil and ammonium acetate under ultrasonic irradiation in ethanol. ZnS‐ZnFe2O4 was characterized by Fourier transform infrared (FT‐IR) spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS) analysis, scanning electron microscopy (SEM) image, X‐ray diffraction (XRD) pattern and vibrating sample magnetometer (VSM) curve. This method has advantages such as high efficiency of the heterogeneous catalyst, the use of environmentally‐friendly solvent, high yields, short reaction times and easy isolation of the products and chromatography‐free purification. Our outcomes illustrated that the present nanocatalyst with nearly spherical and Cauliflower‐like morphology and average particle size of 36 nm could be applied as an effective and magnetically recyclable catalyst without any significant decreasing of activity. Furthermore, the synergic effect of bimetallic Lewis acids was studied for the synthesis of imidazole derivatives.  相似文献   

9.
A green, novel and extremely efficient nanocatalyst was successfully synthesized by the immobilization of Ni as a transition metal on Fe3O4 nanoparticles coated with tryptophan. This nanostructured material was characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, inductively coupled plasma optical emission spectroscopy, vibrating sample magnetometry and X‐ray diffraction. The prepared nanocatalyst was applied for the oxidation of sulfides, oxidative coupling of thiols and synthesis of 5‐substituted 1H‐tetrazoles. The use of non‐toxic, green and inexpensive materials, easy separation of magnetic nanoparticles from a reaction mixture using a magnetic field, efficient and one‐pot synthesis, and high yields of products are the most important advantages of this nanocatalyst.  相似文献   

10.
Magnetically recoverable and environmentally friendly Cu‐based heterogeneous catalyst has been synthesized for the one‐pot conversion of aldehydes to their corresponding primary amides. The Fe3O4@SiO2 nanocomposites were prepared by synthesis of Fe3O4 magnetic nanoparticles (MNPs) which was then coated with a silica shell via Stöber method. Bi‐functional cysteine amino acid was covalently bonded onto the siliceous shell of nanocatalyst. The CuII ions were then loaded onto the modified surface of nanocatalyst. Finally, uniformly dispersed copper nanoparticles were achieved by reduction of CuII ions with NaBH4. Amidation reaction of aryl halides with electron‐withdrawing or electron‐donating groups and hydroxylamine hydrochloride catalyzed with Fe3O4@SiO2@Cysteine‐copper (FSC‐Cu) MNPs in aqueous condition gave an excellent yield of products. The FSC‐Cu MNPs could be easily isolated from the reaction mixture with an external magnet and reused at least 8 times without significant loss in activity.  相似文献   

11.
In this study, the synthesis of sulfonic acid supported on ferrite–silica superparamagnetic nanoparticles (Fe3O4@SiO2@SO3H) as a nanocatalyst with large density of acidic groups is suggested. This nanocatalyst was prepared in three steps: preparation of colloidal iron oxide magnetic nanoparticles (Fe3O4 MNPs), coating of silica on Fe3O4 MNPs (Fe3O4@SiO2) and incorporation of sulfonic acid as a functional group on the surface of Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2@SO3H). The properties of the prepared magnetic nanoparticles were characterized using transmission electron microscopy, infrared spectroscopy, vibrating sample magnetometry, X‐ray diffraction and thermogravimetric analysis. Finally, the applicability of the synthesized magnetic nanoparticles was tested as a heterogeneous solid acid nanocatalyst for one‐pot synthesis of diindolyloxindole derivatives in aqueous medium. Oxindole derivatives were produced by the coupling of indole and isatin compounds with good to high yields (60–98%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Fe3O4@vitamin B1 was designed and prepared as an inexpensive and efficient heterogeneous nanocatalyst for the synthesis of new 1,3‐thiazol derivatives. The structure of the nanomagnetic catalyst was comprehensively characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. The three‐component, one‐pot condensation of arylglyoxal monohydrate, cyclic 1,3‐dicarbonyls and thioamides in water as a green solvent was applied for the preparation of 1,3‐thiazol derivatives. Simple preparation of the catalyst from commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent are some advantages of this protocol. The superparamagnetic nanocatalyst is magnetically separable and retains its stability after recycling for at least five consecutive runs without detectable activity loss.  相似文献   

13.
Immobilized triazine bis[mercapto amine] complexes of Pd(0) (NiFe2O4@TABMA-Pd(0)) was easily synthesized and applied as highly efficient and versatile nanocatalyst for the synthesis of various trans stilbenes with high performance for the Heck coupling reaction of several types of aryl halides under thermal conditions. In short reaction time, excellent yields of trans stilbene derivatives have been achieved using NiFe2O4@TABMA-Pd(0) catalyst.  相似文献   

14.
Fe3O4@SiO2–APTES‐supported trifluoroacetic acid nanocatalyst was used for the one‐pot synthesis of α‐aminonitriles via a three‐component reaction of aldehydes (or ketones), amines, and sodium cyanide. This method produced a high yield of 75–96% using only a small amount of the catalyst (0.05 g) in EtOH at room temperature. The catalyst was also employed for the synthesis of 5‐substituted 1H‐tetrazoles from nitriles and sodium azide in EtOH at 80°C. The tetrazoles were produced with good‐to‐excellent yields in a short reaction time of 4 h. Both synthetic methods were carried out in the absence of an organic volatile solvent. Because the supported trifluoroacetic acid generated a solid acid on the surface, thus the acid corrosiveness was not a serious challenge. This heterogeneous nanocatalyst was magnetically recovered and reused several times without significant loss of catalytic activity.  相似文献   

15.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

16.
An efficient synthesis of pyrido[2,3‐d]pyrimidine derivatives via one‐pot multicomponent reactions of 6‐amino‐2‐(alkylthio)pyrimidin‐4(3H)‐one, 3‐cyanoacetylindole and arylaldehydes using [Fe3O4@ZrO2] as magnetically recyclable nanocatalyst is reported. This protocol furnished the desired products in good to excellent yields (70–93 %) and lower reaction times. The catalyst could be easily and efficiently separated from the final product solution by an external magnet and be reused in 5 consecutive runs without any significant activity decrease.  相似文献   

17.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

18.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

19.
A copper(II)–vanillin complex was immobilized onto MCM‐41 nanostructure and was used as an inexpensive, non‐toxic and heterogeneous catalyst in the synthesis of symmetric aryl sulfides by the cross‐coupling of aromatic halides with S8 as an effective sulfur source, in the oxidation of sulfides to sulfoxides using 30% H2O2 as a green oxidant and in the synthesis of 5‐substituted 1H –tetrazoles from a smooth (3 + 2) cycloaddition of organic nitriles with sodium azide (NaN3). The products were obtained in good to excellent yields. This catalyst could be reused several times without loss of activity. Characterization of the catalyst was performed using Fourier transform infrared, energy‐dispersive X‐ray and atomic absorption spectroscopies, X‐ray diffraction, thermogravimetric analysis, and scanning and transmission electron microscopies.  相似文献   

20.
The catalytic performance of the superparamagnetic nanocatalyst Fe3O4@SiO2@Sulfated boric acid as a green, recyclable, and acidic solid catalyst in the synthesis of chromeno[4,3,2‐de][1,6]naphthyridine derivatives has been studied. Chromeno[4,3,2‐de][1,6]naphthyridine derivatives via a pseudo four‐component reaction from aromatic aldehydes (1 mmol), malononitrile (2 mmol), and 2′‐hydroxyacetophenone in the presence of Fe3O4@SiO2@Sulfated boric acid (0.004 g) as a nanocatalyst in 3 mL of water as a green solvent at 80°C has been synthesized. The advantages of this method are higher product yields in shorter reaction times, easy recyclability and reusability of the catalyst, and easy work‐up procedures. The nanocatalyst was reused at least six times. The nanocatalyst retained its stability in the reaction, and after reusability, it was separated easily from the reaction by an external magnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号