首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
To solve the problem of stability of organic luminescence radicals, Li et al. proposed a new kind of organic luminescence radicals with non-Aufbau electronic structure by using donor-acceptor molecular structure. The stability of this kind of radicals was greatly improved and the high luminous efficiency was maintained. Using a non-Aufbau radical as the emission layer of an OLED, the maximum external efficiency of 5.3% has been achieved, which is among the highest efficiencies for pure organic near-intrared electroluminescence. This work has been published online in the Nature Materials on July 22,2019.  相似文献   

2.
We report a donor-acceptor(D-A) type non-luminescent neutral radical, tris-2,4,6-trichlorophenylmethyl-N,N-dimethyl-9H-carbazol-3-amine(TTM-Cz-DMA). The results of cyclic voltammetry and quantum chemistry calculation confirm TTM-Cz-DMA has the non-Aufbau electronic structure, which means the singly occupied molecular orbital(SOMO) lies below the highest doubly occupied molecular orbital(HOMO). The non-Aufbau electronic structure changes to the Aufbau electronic structure after protonation and exhibits proton-responsive turn-on fluorescence, which is totally reversible by deprotonation. The dihedral angle between donor and acceptor moieties of TTM-Cz-DMA in excited state reduces from 88° to 62° after protonation, causing the turn-on fluorescence. Our results offer a viewing angle to understand the luminescence of radicals and provide a possible application of proton detection.  相似文献   

3.
The geometries and electronic structures of a series of electron donor-acceptor radical molecules have been studied theoretically. The computational results show that the introduction of substituents with strong electron donating ability into tri-(2,4,6-trichlorophenyl) methyl(TTM) radicals enables the radical molecules to form the non-Aufbau electronic structure. The difficulty of forming the non-Aufbau electronic structure decreases with the enhancement of the electron donating ability of the substituent, but the expansion of the molecular conjugated system is not conducive to the formation. The hybridization of different fragments in molecular orbitals results in the disproportionation of orbital energy level and forms a staggered energy level structure. The electronic structure of radical molecules can be adjusted by substituents and molecular skeleton profoundly, which is a very effective means for molecular design.  相似文献   

4.
Radio-photoluminescence (RPL) materials display a distinct radiation-induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal-ion-doped inorganic materials. Here we document the RPL of a metal–organic framework (MOF) for the first time: X-ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X-ray attenuator. These radicals afford new emission features in both UV-excited and X-ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF-based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.  相似文献   

5.
Radio‐photoluminescence (RPL) materials display a distinct radiation‐induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal‐ion‐doped inorganic materials. Here we document the RPL of a metal–organic framework (MOF) for the first time: X‐ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X‐ray attenuator. These radicals afford new emission features in both UV‐excited and X‐ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF‐based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.  相似文献   

6.
Water-caused luminescence quenching is a well-known and intractable issue for luminescence lanthanide complexes, greatly confining their broad application as sensing and displaying devices in water system.Herein, an anionic and coordination-saturated lanthanide complex with a nanosheet-like structure has been prepared. It exhibits excellent photophysical properties both in solid state and in aqueous suspension. Noteworthily, a 13% improvement for sensitization efficiency from organic ligand to c...  相似文献   

7.
Organic crystals constructed by pi-conjugated molecules have been paid great attention to in the field of organic optoelectronic materials. The superiorities of these organic crystal materials, such as high thermal stability, highly ordered structure, and high carrier mobility over the amorphous thin film ma-terials, make them attractive candidates for optoelectronic devices. Single crystal with definite struc-ture provides a model to investigate the basic interactions between the molecules (supramolecular interaction), and the relationship between molecular stacking modes and optoelectronic performance (luminescence and carrier mobility). Through modulating molecular arrangement in organic crystal, the luminescence efficiency of organic crystal has exceeded 80% and carrier mobility has been up to the level of 10 cm2·V?1·s?1. Amplified stimulated emission phenomena have been observed in many crys-tals. In this paper, we will emphatically introduce the progress in optoelectronic functional organic crystals and some correlative principle.  相似文献   

8.
X-ray imaging technology has achieved important applications in many fields and has attracted extensive attentions. Dynamic X-ray flexible imaging for the real-time observation of the internal structure of complex materials is the most challenging type of X-ray imaging technology, which requires high-performance X-ray scintillators with high X-ray excited luminescence (XEL) efficiency as well as excellent processibility and stability. Here, a macrocyclic bridging ligand with aggregation-induced emission (AIE) feature was introduced for constructing a copper iodide cluster-based metal–organic framework (MOF) scintillator. This strategy endows the scintillator with high XEL efficiency and excellent chemical stability. Moreover, a regular rod-like microcrystal was prepared through the addition of polyvinyl pyrrolidone during the in situ synthesis process, which further enhanced the XEL and processibility of the scintillator. The microcrystal was used for the preparation of a scintillator screen with excellent flexibility and stability, which can be used for high-performance X-ray imaging in extremely humid environments. Furthermore, dynamic X-ray flexible imaging was realized for the first time. The internal structure of flexible objects was observed in real time with an ultrahigh resolution of 20 LP mm−1.  相似文献   

9.
The temporal and spectral properties of luminescence from individual CdSe quantum dot-oligophenylene vinylene nanostructures (single quantum dots with conjugated organic ligands coordinated to the surface) are profoundly modified relative to blended films of the same components. These kinds of composite quantum dot-conjugated organic systems have attracted significant interest as a way to improve efficiency in photovoltaic device applications. By direct functionalization of the dot surface with the conjugated organic ligands, we realize a significant enhancement in energy transfer and luminescence stability.  相似文献   

10.
Quenching of the luminescence of carboxyl-containing polymer molecules containing a luminescent marker by transition metal ions (Cu2+, Ni2+) is observed not only in aqueous and aqueous-salt solutions, but also in polar organic solvents (methanol, ethanol, dimethylformamide). In dilute solutions, quenching refl ects binding of metal ions with the polymer and changes in the degree of filling of the polymer carboxyl groups with transition metal ions quenching the luminescence. The equilibrium stability constant of the formed macromolecular metal complex in organic media can be quantitatively estimated from the quenching effect using the relationships that follow from the law of mass action. The formation and stability of Cu2+ and Ni2+ complexes with polymethacrylic acid in protic (methanol, ethanol) and aprotic (dimethylformamide) solvents at low polymer concentrations (0.4–0.02 mg mL–1) were studied using the quenching effect. In methanol, in contrast to ethanol and dimethylformamide, two mechanisms of binding of transition metal ions with different equilibrium stability constants of the complexes (\({K_{{1^{st}}}}\) > 3 × 109 and \({K_{{2^{st}}}}\) ≈ 106–104) were revealed. The infl uence exerted on the stability of the complexes and on the complexation mechanism by the nature and acidity of the organic solvent, polymer concentration, kind of the transition metal ion quenching the luminescence, and NaOH and HCl additions was studied. The results obtained demonstrate the efficiency of the luminescence method used and prospects for its further use for studying polymer systems containing transition metal ions in organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号