首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of the present study is to explore the coherence of thermodynamic equilibrium predictions with the actual catalytic reaction of CH4 with N_2O,particularly at higher CH4 conversions.For this purpose,key process variables,such as temperature(300℃-550℃) and a molar feed ratio(N_2O/CH4 = 1,3,and 5),were altered to establish the conditions for maximized H_2 yield.The experimental study was conducted over the Co-ZSM-5 catalyst in a fixed bed tubular reactor and then compared with the thermodynamic equilibrium compositions,where the equilibrium composition was calculated via total Gibbs free energy minimization method.The results suggest that molar feed ratio plays an important role in the overall reaction products distribution.Generally for N_2O conversions,and irrespective of N_2O/CH_4 feed ratio,the thermodynamic predictions coincide with experimental data obtained at approximately 475℃-550℃,indicating that the reactions are kinetically limited at lower range of temperatures.For example,theoretical calculations show that the H2 yield is zero in presence of excess N2O(N_2O/CH_4 = 5).However over a Co-ZSM-5 catalyst,and with a same molar feed ratio(N_2O/CH_4) of 5,the H_2 yield is initially 10%at 425℃,while above450℃ it drops to zero.Furthermore,H_2 yield steadily increases with temperature and with the level of CH4 conversion for reactions limited by N_2O concentration in a reactant feed.The maximum attainable(from thermodynamic calculations and at a feed ratio of N_2O/CH4=3) H_2 yield at 550℃ is 38%,whereas at same temperature and over Co-ZSM-5,the experimentally observed yield is about 19%.Carbon deposition on Co-ZSM-5 at lower temperatures and CH4 conversion(less than 50%) was also observed.At higher temperatures and levels of CH_4 conversion(above 90%),the deposited carbon is suggested to react with N_2O to form CO_2.  相似文献   

2.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

3.
A novel Pd-Fe/α-Al_2O_3 catalyst was synthesized by incipient-wetness impregnation method with bayberry tannin as chelating promoter and commercial hollow column Raschig ring a-Al_2O_3 as support for the synthesis of diethyl oxalate from CO and ethyl nitrite.A variety of characterization techniques including N_2 physical adsorption,optical microscopy,scanning electron microscopy and energy dispersive system(SEM-EDS),inductively coupled plasma optical emission spectroscopy(ICP-OES),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),were employed to explore the relationship between the physicochemical properties and activity of catalysts.It indicated that a large number of phenolic hydroxyl groups in bayberry tannin can efficiently anchor the active component Pd,reduce the particle size and make the active Pd as a multi-ring distribution on the commercial a-Al_2O_3 suppo rt,which we re beneficial to improve the catalytic activity for the production of diethyl oxalate from CO and ethyl nitrite.0.3 wts Pd-Fe/α-Al_2O_3 showed excelle nt catalytic activity and selectivity in a continuous flow,fixed-bed reactor with the loading amount of 10 mL catalysts,Under the mild reaction conditions,the space-time yield of diethyl oxalate was 978 g L ~1 h ~1 and CO conversion was 44% with the selectivity to diethyl oxalate of 95.5%.  相似文献   

4.
《Comptes Rendus Chimie》2015,18(3):277-282
Ni7.5/NaY catalysts were prepared using two different methods, the incipient wetness impregnation method and the “two-solvent” method. These catalysts were characterised by N2 sorption, XRD, TEM and TPR. Their activity and stability in the dry reforming of methane were tested at atmospheric pressure under an equimolar mixture of methane and carbon dioxide. Three different Ni species, very small, spherical, and layers of nickel silicate were observed by TEM. The preparation by the two-solvent method led to a better dispersion of the active phase as well as to better activity and stability. These catalysts were promoted with small amounts (0.1 wt%) of rhodium. Rhodium facilitates the reducibility and greatly enhances catalytic activity. A complete conversion (100%) for CH4 and CO2 over the Rh promoted catalyst is achieved at 584 °C and 559 °C respectively, while for the non-promoted Ni7.5/NaY catalyst, only a 60% conversion rate for CH4 and CO2 is reached at the same temperatures.  相似文献   

5.
Spinel structure nickel ferrite (NiFe2O4) doped graphitic carbon nitride (g-C3N4) photocatalyst NiFe2O4/g-C3N4 was synthesized by the coprecipitation route to enhance the photocatalytic activity for the visible-light driven degradation of methyl orange. The NiFe2O4 doping content is responsible for the microstructure and photocatalytic activity of NiFe2O4/g-C3N4 samples. Compared with pure NiFe2O4 and g-C3N4, the 2-NiFe2O4/g-C3N4 composite with NiFe2O4 doping of 2.0 wt% exhibited excellent photocatalytic activity and superior stability after five runs for degrading methyl orange under visible light irradiation. The catalytic activity of 2-NiFe2O4/g-C3N4 sample produced using the coprecipitation route was higher than those of conventional 2-NiFe2O4/g-C3N4 bulks prepared by the impregnation approach. The prepared samples for the photocatalytic degradation of methyl orange followed pseudo-first-order reaction kinetics. It’s ascribed to the synergistic effect between NiFe2O4 and g-C3N4, which can inhibit the recombination of photoexcited electron-hole pairs, accelerate photoproduced charges separation, and enhance the visible light absorption.  相似文献   

6.
Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and thermogravimetric analysis (TGA) techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.  相似文献   

7.
Esterification of acetic acid with n-Butanol has been studied in a heterogeneous reaction system using two γ-alumina-supported vanadium oxide catalysts with different V loadings, which were prepared by the impregnation of a precipitated alumina. The alumina support and the supported catalysts were characterized using X-ray diffraction, N2 adsorption, EDX analysis and NH3-TPD techniques. The effects of the reaction time, of the molar ratio of the reactants, of the speed of agitation and of the mass fraction of the catalyst on the catalytic properties were studied. In the presence of the supported catalyst containing 10 wt % V2O5 (10V-Al2O3 sample) the conversion reached 87.7% after 210 min of reaction at 100 °C with an n-Butanol-to-acetic acid mole ratio equal to one. The conversion as well as the total acidity measured by TPD of NH3 increased in the following order: Al2O3 < 5V-Al2O3 (5 wt % V2O5/Al2O3) < 10V-Al2O3. In all cases the reaction was completely selective to n-butyl acetate. Nevertheless, a loss in catalytic activity after three reaction cycles with 10 V2O5–Al2O3 catalyst was observed.  相似文献   

8.
In terms of the reaction of CO_2 reduction to CO with hydrogen, CO_2 conversion is very low at low temperature due to the limitation of thermodynamic equilibrium(TE). To overcome this limitation, plasma catalytic reduction of CO_2 to CO in a catalyst-filled dielectric barrier discharge(DBD) reactor is studied. An enhanced effect of plasma on the reaction over Au/CeO_2 catalysts is observed. For both the conventionally catalytic(CC) and plasma catalytic(PC, Pin= 15 W) reactions under conditions of 400 °C, H_2/CO_2= 1,200 SCCM, GHSV = 12,000 mL·g~(-1)cat·h~(-1), CO_2 conversions over Au/CeO_2 reach 15.4% and 25.5% due to the presence of Au, respectively, however, those over CeO_2 are extremely low and negligible. Moreover,CO_2 conversion over Au/CeO_2 in the PC reaction exceeds 22.4% of the TE conversion. Surface intermediate species formed on the catalyst samples during the reactions are determined by in-situ temperatureprogrammed decomposition(TPD) technique. Interestingly, it disclosed that in the PC reaction, the formation of formate intermediate is enhanced by plasma, and the acceleration by plasma in the decomposition of formate species is much greater than that in the formation of formate species on Au/CeO_2. Enhancement factor is introduced to quantify the enhanced effect of plasma. Lower reactor temperature, higher gas hourly space velocity(GHSV), and lower molar ratio of H_2/CO_2 would be associated with larger enhancement factor.  相似文献   

9.
To gain deep insight into the Morphological effect of Ni_xMg_(1-x)O catalysts on the reaction of CO_2 reforming with methane, we designed and fabricated three different spatial structural Ni_xMg_(1-x)O catalysts.These Ni_xMg_(1-x)O catalysts with specific models such as rod, sheet and sphere, exhibited various activity and stability in CO_2 reforming reaction. Herein Ni_xMg_(1-x)O nanorods displayed higher catalytic activity, in which methane conversion was up to 72% and CO_2 conversion was 64% at 670°C with a space velocity of 79,200 mL/(gcath), compared with nanosheet and nanosphere counterparts. Furthermore, both catalysts of Ni_xMg_(1-x)O nanorod and nanosheet showed a high resistance toward coke deposition and sintering of active sites in the process of CO_2 reforming of methane.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(3):250-260
CuO–ZnO–Al2O3 catalysts were synthesized by two methods, sol–gel and co-precipitation syntheses. Al2O3 was then substituted with other supports, such as ZrO2, CeO2 and CeO2–ZrO2 in order to have a better understanding of the support's effect. These catalysts containing 30 wt% of Cu were then tested for CO2 hydrogenation into methanol. The effect of reaction temperature and GHSV on the catalytic behaviour was also investigated. The best results were obtained with a 30 CuO–ZnO–ZrO2 catalyst synthesized by co-precipitation and calcined at 400 °C. This catalyst presents a good CO2 conversion rate (23%) with 33% of methanol selectivity, leading to a methanol productivity of 331 gMeOH.kgcata−1·h−1 at 280 °C under 50 bar and a GHSV of 10,000 h−1.  相似文献   

11.
This study reports facile in situ synthesis of magnetically retrievable nanocomposites of nanocellulose (derived from waste biomass) and NiFe2O4 nanoparticles using hydrothermal method. The synthesized nanocomposites were characterized using various techniques such as FT-IR, powder XRD, HR-TEM, BET and VSM. The characterization of nanocomposites clearly revealed that NiFe2O4 nanoparticles were well dispersed on the surface of cellulose nanofibres. The catalytic performance of the synthesized nanocomposites was assessed for both the photocatalytic oxidation and reduction of organic pollutants. The prepared nanocomposites displayed excellent catalytic performance in comparison to pristine NiFe2O4 nanoparticles due to stabilization and increased dispersability of NiFe2O4 nanoparticles on the cellulose matrix. The present work promotes the use of bio based renewable sources to fabricate environment friendly materials to be used in the field of catalysis for the abatement of organic pollutants.  相似文献   

12.
The reduction ability of NO to N2 and the oxidation performance of 1,2-dichloroethane (DCE) over α-MnO2 catalysts were investigated. The results show that α-MnO2-3 exhibited the highest catalytic activity in 63.5 % conversion of NOx reduction by C3H8 at 250 °C, and 80 % conversion of DCE combustion by O2 at 338 °C. It is revealed the active phase of α-MnO2-3 is tetragonal α-MnO2 with the selectively exposed plane of (2 1 1). It was proposed the high DCE decomposition of α-MnO2-3 was ascribed to the redox properties. The overall characterization results revealed that α-MnO2-3 catalyst preserves more active sites of low valence Mn and higher surface adsorbed oxygen (Oads) /lattice oxygen (Olatt) at the outermost layers, and lower reduction temperature in H2-TPR profiles than that of other catalysts. Meanwhile, NH3-TPD profile of α-MnO2-3 also shows a large number of acid sites promote NOx reduction.  相似文献   

13.
Zirconia nanotube-supported H3PW12O40 (HPW) catalysts exhibit high catalytic activities in the synthesis of fatty acid ethyl ester.  相似文献   

14.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

15.
The compounds RuL2HX, where L = PiPr3 and X = Cl or N(SiMe3)2, are catalyst precursors for dimerization of terminal alkynes to enynes and also to cumulenes at 23 °C; selectivity among these products is X-dependent, but not high. Conversion of Ru species onto the catalytic cycle was undetectably small, so alternative approaches to understanding the catalytic mechanism were employed: stoichiometric reactions, independent synthesis of candidate intermediates, and trapping with CO. These show the intermediacy of vinylidenes and vinyl compounds, and reveal conversion of cumulenes to the thermodynamically more stable enynes.  相似文献   

16.
Nano-sized nickel ferrite (NiFe2O4) was prepared by hydrothermal method at low temperature. The crystalline phase, morphology and specific surface area (BET) of the resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and nitrogen physical adsorption, respectively. The particle sizes of the resulting NiFe2O4 samples were in the range of 5–15 nm. The electrochemical performance of NiFe2O4 nanoparticles as the anodic material in lithium ion batteries was tested. It was found that the first discharge capacity of the anode made from NiFe2O4 nanoparticles could reach a very high value of 1314 mAh g−1, while the discharge capacity decreased to 790.8 mAh g−1 and 709.0 mAh g−1 at a current density of 0.2 mA cm−2 after 2 and 3 cycles, respectively. The BET surface area is up to 111.4 m2 g−1. The reaction mechanism between lithium and nickel ferrite was also discussed based on the results of cycle voltammetry (CV) experiments.  相似文献   

17.
生物质衍生物乙酰丙酸是生物质转化过程中重要的平台分子,对其进行催化加氢可以得到高附加值的产物,是连接生物质转化和石油化工的重要途径。本实验研究了无溶剂微波辅助热解法绿色制备负载型钌基催化剂,以Ru3(CO)12为金属前体,碳纳米管、椰壳活性炭和活性氧化铝为催化剂载体,该制备方法简单易操作,环保高效低能耗,不使用溶剂,避免了杂质的引入和对催化剂的污染,是一种新型负载型贵金属催化剂的制备方法。同样采取传统浸渍法制备Ru/γ-Al2O3-IM。在乙酰丙酸水相催化加氢反应中的催化活性顺序为Ru/AC > Ru/CNT ≈ Ru/FCNT > Ru/γ-Al2O3-MW ≈ Ru/γ-Al2O3-IM。比较不同反应溶液水、甲醇、乙醇、苯甲醚、环己烷和丙酮等对于乙酰丙酸催化加氢反应的影响,并通过考察反应温度、反应压力和反应物初始浓度等因素对加氢反应的影响,确定最佳实验条件为:反应温度为90℃,反应压力2.0 MPa,适宜反应物浓度为0.10 g/mL,产品GVL收率大于99%。  相似文献   

18.
《Comptes Rendus Chimie》2015,18(3):241-249
The increase of the concentration of greenhouse gases in the atmosphere, especially CO2, produced mainly by the burning of fossil fuels is one of the principal causes of global warming. The transformation of CO2 into tangible products such as fuels and/or raw materials for the petrochemical industry (methanol, hydrocarbons) is one of the possible routes. The synthesis of hydrocarbons by hydrogenation of CO2 can be done in a single step using oxide/zeolite catalysts. The objective of our study was to evaluate the effect of the addition of zeolite and the proximity between the two oxide–zeolite sites where the oxide layer is iron-based and wherein the zeolite is represented by the HZSM-5. For this, a series of hybrid catalysts was prepared by CuO–Fe2O3–Al2O3/HZSM-5 mechanical mixing. The catalytic conversion of CO2 has been carried out in a fixed-bed reactor under the following operating conditions: T = 350 °C, P = 30 bar, H2/CO2 = 3. The results show that the addition of the zeolite by intimately mixing it does not improve the catalytic properties and that the yield of hydrocarbons is best obtained with the CuO–Fe2O3–Al2O3 oxide catalyst according to the Fisher–Tropsch process (FT). However, the increase in near-zeolite oxide inhibits the formation of hydrocarbons and promotes the formation of carbon monoxide.  相似文献   

19.
A two-stage continuous screw-kiln reactor was investigated for the production of synthesis gas (syngas) from the pyrolysis of biomass in the form of waste wood and subsequent catalytic steam reforming of the pyrolysis oils and gases. Four nickel based catalysts; NiO/Al2O3, NiO/CeO2/Al2O3, NiO/SiO2 (prepared by an incipient wetness method) and another NiO/SiO2 (prepared by a sol–gel method), were synthesized and used in the catalytic steam reforming process. Pyrolysis of the biomass at a rapid heating rate of approximately 40 °C/s, was carried out at a pyrolysis temperature of 500 °C and the second stage reforming of the evolved pyrolysis gases was carried out with a catalytic bed kept at a temperature of 760 °C. Gases were analysed using gas chromatography while the fresh and reacted catalyst was analysed by scanning electron microscopy, thermogravimetric analysis, transmission electron microscopy with energy dispersive X-ray and X-ray photoelectron spectroscopy. The reactor design was shown to be effective for the pyrolysis and catalytic steam reforming of biomass with a maximum syngas yield of 54.0 wt.% produced when the sol–gel prepared NiO/SiO2 catalyst was used, which had the highest surface area of 765 m2 g−1. The maximum H2 production of 44.4 vol.% was obtained when the NiO/Al2O3 catalyst was used.  相似文献   

20.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号