首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

2.
The hydrophobic ionic liquid of [BMIM][PF6] was successfully used for the ultrasound‐assisted extraction of hydrophobic magnolol and honokiol from cortex Magnoliae officinalis. To obtain the best extraction efficiencies, some ultrasonic parameters including the concentration of [BMIM][PF6], pH, ultrasonic power and ultrasonic time were evaluated. The results obtained indicated that the [BMIM][PF6]‐based ultrasound‐assisted extraction efficiencies of magnolol and honokiol were greater than those of the [BMIM][BF4]‐based ultrasound‐assisted extraction (from 48.6 to 45.9%) and the traditional ethanol reflux extraction (from 16.2 to 13.3%). Furthermore, the proposed extraction method is validated by the recovery, correlation coefficient (R2) and reproducibility (RSD, n=5), which were 90.8–102.6, 0.9992–0.9998, and 1.6–5.4%, respectively.  相似文献   

3.
An affinity-dye, Cibacron Blue 3GA (CB), derivatized organic salt [BMIM]3[CB] was synthesized for lysozyme extraction. This compound was formed by mixing an ionic liquid (IL) [BMIM][Cl] and the silver salt of CB. Liquid-liquid extractions of lysozyme from the aqueous and [BMIM]3[CB] in [BMIM][PF6] solutions were examined in this study. The transfer of lysozyme from the aqueous phase to the IL phase decreased while the pH of the aqueous phase increased. An extraction higher than 90% was observed at pH 4. Under a high ionic strength, the lysozyme would transform back from the IL phase into the aqueous phase. Lysozyme molecules were almost quantitatively recovered from the IL phase to the aqueous solutions of 1M KCl under pH 9-11. It appeared that the extraction was specific for lysozyme in contrast to cytochrome c, ovalbumin, and bovine serum albumin. The extraction efficiency of the IL phase remained essentially the same after eight cycles of extraction.  相似文献   

4.
The solvothermal reactions of Ti(OiPr)4 in alcohol using ionic liquid as additive were investigated. In the presence of [BMIM][Cl], [BMIM][Br], [BMIM][NTf2], [BMIM][SO3Me], [BMIM][SO4Me], or [BMIM][OTf] (BMIM = 1‐Butyl‐3‐methylimidazolium), pure anatase nanoparticles were obtained. The controlled hydrolysis of Ti(OiPr)4 in the presence of ionic liquids to form titanium oxo clusters plays a key role in the formation of anatase nanostructures, and ionic liquids can be repeatedly used to synthesise anatase nanoparticles. However, in the presence of [BMIM][PF6], [BMIM]2[Ti(OH)6] was obtained by an anion exchange reaction.  相似文献   

5.
This article represents a step towards how to choose an ionic liquid as the solvent to improve metal ion (Ag+ and Pb2+) extraction. The liquid-liquid solvent extraction is proposed with the following imidazolium ionic liquids (ILs): 1-ethyl-3-ethylimidazolium, or 1-butyl-3-ethylimidazolium, or 1-hexyl-3-ethylimidazolium bis{(trifluoromethyl)sylfonyl}imide [EEIM][NTf2], or [BEIM][NTf2], or [HEIM][NTf2], or 1-butyl-3-ethylimidazolium hexafluorophosphate [BEIM][PF6], or 1-hexyl-3-ethylimidazolium hexafluorophosphate [HEIM][PF6] and the popular 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] for comparison. The effect of anion type (NTf2 versus PF6) and the effect of structural components of an ionic liquid including alkyl chain length at the cation and the ethyl substituent instead methyl at the cation, on the extraction and re-extraction processes by using dithizone as a metal chelator, were studied at 296 K. Dithizone was employed to form neutral metal-dithizone complexes with heavy metal ions to extract them from aqueous solution into the ILs. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users. Presented at the 236th ACS National Meeting, August 17–21, Philadelphia, USA.  相似文献   

6.
Density and speed of sound measurements have been made on the systems containing the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and some organic solvents having a wide range of dielectric constants. Similar studies have been carried out for tetrabutylammonium hexafluorophosphate ([TBA][PF6]), which has common anion ([PF6]) with the studied ionic liquid. For the systems investigated, the apparent molar volumes and apparent molar isentropic compressibilities were determined and fitted to the Redlich–Mayer and the Pitzer equations from which the corresponding limiting values were obtained. These limiting values were used to obtain some information about ion–solvent interactions. Furthermore, using the ionic limiting apparent volume values for [TBA]+ from the literature and limiting apparent molar volume for the ionic liquid and [TBA][PF6] obtained in this work, the ionic limiting apparent molar volume values for the cation [BMIM]+ in different organic solvents were also estimated.  相似文献   

7.
Absalan G  Akhond M  Sheikhian L 《Talanta》2008,77(1):407-411
In this paper, imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] were tested as extracting solvents for removal of 3-indole butyric acid (IBA) from aqueous media with subsequent determination using HPLC. Percent extraction of IBA was strongly affected by pH of aqueous phases and the chemical structures of ionic liquids (ILs). Extraction of IBA was quantitative in the pH values lower than pKa of IBA. Considering both extraction and stripping efficiencies of IBA, [C4mim][PF6] was found to act more efficient than other studied ILs. Capacity of [C4mim][PF6] was 17.6 × 10−4 mmol IBA per 1.0 mL of IL. Ionic strength of aqueous phase and temperature had shown no serious effects on extraction efficiency of IBA. A preconcentration factor of 100 and a relative standard deviation of 1.16% were obtained. It was found that ionic liquid phase was reusable almost five times for extraction/stripping purposes. 3-Indole acetic acid showed interferential effect in the extraction step. In order to assess the applicability of the method, extraction and stripping of IBA from pea plants and some other samples were studied.  相似文献   

8.
A headspace single drop microextraction (SDME) method using extraction solvents comprised of micellar ionic liquids (ILs) was used to perform the extraction of 17 aromatic compounds from aqueous solution and coupled with liquid chromatography. The effects of various experimental parameters including type of micellar IL extraction solvent, stir rate, extraction time, volume of the microdroplet, and addition of organic solvent were investigated and optimized. Two different micellar solutions were formed by dissolving 1-decyl-3-methylimidazolium bromide ([DMIM][Br]) and sodium dodecyl sulfate (SDS) in 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). It was observed that the enrichment factors of the 17 studied compounds were all enhanced with the micellar ionic liquid extraction solvent compared to the neat [BMIM][Cl] IL. The highest sensitivity was obtained with the [BMIM][Cl]–[DMIM][Br] micellar solution for polycyclic aromatic hydrocarbons (PAHs) with high molecular weight and fused rings while the [BMIM][Cl]–SDS micellar solution was proven to be more sensitive for smaller, more polar molecules. The detection limits were lower when utilizing the [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] extraction solvents compared to the neat [BMIM][Cl] extraction solvent. The reproducibility of the extraction method at 20 °C using extraction solvents composed of [BMIM][Cl]–SDS and [BMIM][Cl]–[DMIM][Br] ranged from 6.7 to 14.0 and 4.2 to 14.7%, respectively.  相似文献   

9.
Hydrophilic ionic liquid of [BMIM][BF4] was successfully applied for the ultrasound-assisted extraction (UAE) of hydrophilic chlorogenic acid from Lonicera japonica Thunb. To explore this extraction procedure, the corresponding extraction parameters including the sample size, [BMIM][BF4] concentration, pH, extraction temperature, ultrasonic power and extraction time were investigated. The results revealed that the [BMIM][BF4]-based UAE efficiency of chlorogenic acid was higher than that of the ethanol-based UAE and the traditional refluent ethanol extraction. And the study on the method reliability further confirmed that the [BMIM][BF4]-based UAE is suitable for the effective extraction of chlorogenic acid from honeysuckle.  相似文献   

10.
Sulphoxide ligands in piperidinium based ionic liquid were demonstrated as highly efficient, selective and environmentally benign systems for the extraction of plutonium from acidic aqueous solution. The extraction followed ‘cation-exchange mechanism’ via [Pu(NO3)·L]3+ and [PuO2(NO3)·L]+ species. The extraction efficiency followed the trend: APSO > BPSO > BMSO. The phenyl substituted sulphoxides showed higher affinity for plutonium due to a combination of steric as well as electronic factors. Extraction process was thermodynamically spontaneous for all three solvent systems. Oxalic acid and sodium carbonate were suitable for quantitative stripping of Pu4+ and PuO2 2+, respectively. APSO in ionic liquid showed good radiolytic stability.  相似文献   

11.
Chen  Zhitao  Zhong  Zibei  Xia  Zhining  Yang  Fengqing  Mu  Xiaojing 《Chromatographia》2012,75(1-2):65-70

The hydrophobic ionic liquid [BMIM]PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) can interact with sodium dodecyl sulfate (SDS) micelles in aqueous solution and modify their physicochemical properties to produce a unique separation efficiency in micellar electrokinetic chromatography (MEKC). An MEKC method was developed using [BMIM]PF6 as a modifier for separating eight fluoroquinolone compounds (ciprofloxacin, enrofloxacin, gatifloxacin, ofloxacin, norfloxacin, enoxacin, pazufloxacin, and tosufloxacin). The effects of several parameters on the separation selectivity, e.g., pH, concentration of background electrolyte, concentration ratio and amount of [BMIM]PF6 and SDS, were investigated. Under the optimal conditions of 10 mmol L−1 sodium borate, pH 7.1, 1.7% (w/w) SDS, 1.5% (w/w) [BMIM]PF6 with 18 kV as running voltage, the eight investigated quinolone compounds were baseline separated within 15 min. The selectivity of the developed method differed from that of the simple SDS micelles system containing no ionic liquid. The results suggest that hydrophobic ionic liquids should be promising modifiers in capillary electrophoresis, especially in MEKC analysis.

  相似文献   

12.
An ionic liquid‐based ultrasound‐assisted extraction method has been developed for the effective extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. The effects of some ultrasound‐assisted extraction parameters including the concentration of [BMIM][BF4], pH, ultrasonic power and time were investigated to optimize the ultrasound‐assisted extraction conditions. Compared to the regular ultrasound‐assisted extraction and traditional refluent extraction, the proposed [BMIM][BF4]‐based ultrasound‐assisted extraction offered shorter extraction times (from 6 h to 40 min) and remarkable higher efficiencies (approximately 30% improved), which supported the suitability of the proposed approach. In addition, the proposed approach was confirmed by the good correlation coefficient (R2), recovery and reproducibility (RSD, n = 5), which were in the range of 0.9992–0.9995, 85.5–101.1%, and 1.87–4.33%, respectively.  相似文献   

13.
The utility of Brønsted-acidic imidazolium ionic liquid [BMIM(SO3H)][OTf] as catalyst for the high yield synthesis of a wide variety of amides under mild conditions via the Ritter reaction of alcohols with nitriles has been demonstrated. As alternative methods for the carbocation generation step, NOPF6 immobilized in [BMIM][PF6] ionic liquid was used in the Ritter reaction of bromides with nitriles and for the synthesis of adamantyl amides from adamantane and nitriles.  相似文献   

14.
Batch extraction of uranium(VI) from uranyl nitrate solutions using TiAP in ionic liquids ([BMIM]PF6 and [HMIM]PF6) is studied. Effects of acidity, TiAP concentration in ionic liquid and temperature on distribution coefficient are studied. Results show that distribution coefficient increases with an increase in acidity and reduces with an increase in the alkyl chain length of the cation of the ionic liquid. Extraction of uranium(VI) by TiAP-[HMIM]PF6 system is found to involve two molecules of the extractant per metal ion and extraction is found to change from being exothermic to endothermic as the percentage of the extractant is increased.  相似文献   

15.
RuCl2(DMSO)2(NC5H4CO2Na-3)2 is very soluble in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium tetrafluoroborate, [(BMIM)BF4]. The complex was prepared by reacting RuCl2(DMSO)4 with NC5H4CO2Na-3, sodium nicotinate, in toluene, and was characterized by spectroscopic methods. The complex catalyzes the hydrogenation of 1-hexene (600 psi H2, 100 °C) in a two-phase system consisting of cyclohexane/[(BMIM)BF4] with 75% conversion in 24 h and modest substrate isomerization. The complex shows good stability and can be reused several times with little loss in activity.  相似文献   

16.
The behavior of an ionic liquid (IL) within aqueous micellar solutions is governed by its unique property to act as both an electrolyte and a cosolvent. The influence of the surfactant structure on the properties of aqueous micellar solutions of zwitterionic SB‐12, nonionic Brij‐35 and TX‐100, and anionic sodium dodecyl sulfate (SDS) in the presence of the “hydrophobic” IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim][PF6]) is assessed along with the possibility of forming oil‐in‐water microemulsions in which the IL acts as the “oil” phase. The solubility of [bmim][PF6] within aqueous micellar solutions increases with increasing surfactant concentration. In contrast to anionic SDS, the zwitterionic and nonionic surfactant solutions solubilize more [bmim][PF6] at higher concentrations and the average aggregate size remains almost unchanged. The formation of IL‐in‐water microemulsions when the concentration of [bmim][PF6] is above its aqueous solubility is suggested for nonionic Brij‐35 and TX‐100 aqueous surfactant solutions.  相似文献   

17.
《Fluid Phase Equilibria》2006,242(2):147-153
Isobaric vapor–liquid equilibrium (VLE) data for ethanol–water systems containing ionic liquids (ILs) 1-methyl-3-methylimidazolium dimethylphosphate ([MMIM][DMP]), 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) at atmospheric pressure (101.32 kPa) were measured with a circulation still. The results showed that the VLE of ethanol–water systems in the presence of different ILs was obviously different from that of the IL-free system. All ILs studied showed a salting-out effect, which gave rise to a change of the relative volatility of ethanol, and even to an elimination of the azeotropic point. It was found that the salting-out effect followed the order of [BMIM][Cl] > [BMIM][Br] > [BMIM][PF6] and [MMIM][DMP] > [EMIM][DEP], which was ascribed to the preferential solvation ability of the ions resulting from the dissociation of the IL.  相似文献   

18.
A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C4tmsim][PF6] was synthesized and developed as a novel medium for liquid/liquid extraction of inorganic mercury in this work. Under optimal condition, o-carboxyphenyldiazoamino-p-azobenzene abbreviated as CDAA reacted with inorganic mercury to form a neutral Hg-CDAA complex, the complex was rapidly extracted into ionic liquid phase. After back-extracting into aqueous phase with sulfide sodium solution, the mercury concentration was detected by cold vapor atomic absorption spectrometry. The extraction and back-extraction efficiencies were 99.9 and 100.1% for 5.0 μg L−1 standard mercury in 1000 mL of water solution, respectively. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 0.01 ng of mercury per milliliter water sample. The proposed method has been used to the determination of trace inorganic mercury in natural water with satisfactory results. Moreover, Zeta potential and surface tension of [C4tmsim][PF6] solution were measured and applied to explain the extraction mechanism of [C4tmsim][PF6] system.  相似文献   

19.
A rapid dispersive liquid-liquid micro-extraction (DLLME) methodology based on the application of 1-hexylpyridinium hexafluorophosphate [C6py][PF6] ionic liquid (IL) as an extractant solvent was applied for the pre-concentration of trace levels of cobalt prior to determination by flame atomic absorption spectrometry (FAAS). 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) was employed as a chelator forming a Co-PMBP complex to extract cobalt ions from aqueous solution into the fine droplets of [C6py][PF6]. Some effective factors that influence the micro-extraction efficiency include the pH, the PMBP concentration, the amount of ionic liquid, the ionic strength, the temperature and the centrifugation time which were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enrichment factor were 0.70 μg L−1 and 60, respectively. The relative standard deviation (RSD) for six replicate determinations of 50 μg L−1 Co was 2.36%. The calibration graph using the pre-concentration system was linear at levels 2–166 μg L−1 with a correlation coefficient of 0.9982. The applicability of the proposed method was evaluated by the determination of trace amounts of cobalt in several water samples.   相似文献   

20.
Room temperature ionic liquids are regarded as “Green solvents” for their nonvolatile and thermally stable properties. They are employed to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, a water immiscible room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent for liquid/liquid extraction of copper ions. Metal chelators, including dithizone, 8‐hydroxyquinoline, and 1‐(2‐pyridylazo)‐2‐naphthol, were employed to form neutral metal‐chelate complexes with copper ions so that copper ions were extracted from aqueous solution into [C4mim][PF6]. The parameters that affect the extraction of copper ions with this biphasic system were investigated. The extraction behavior in this novel biphasic system is shown to be consistent with that of traditional solvents. For example, the extraction with this biphasic system is strongly pH dependent. So, the extraction efficiency of coppers ion from an aqueous phase can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation and preconcentraction of copper ions can be accomplished by controlling the pH value of the extraction system. It appears that the use of ionic liquid as an alternate solvent system in liquid/liquid extraction of copper ions is very promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号