首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High density energetic salts containing nitrogen‐rich cations and the nitranilic anion were readily synthesized in high yield by metathesis reactions of sodium nitranilate 2 and an appropriate halide. All of the new compounds were fully characterized by elemental, spectral (IR, 1H, 13C NMR), and thermal (DSC) analyses. The structure of hydrazinium nitranilate ( 4 ) was also determined by single‐crystal X‐ray analysis. The high symmetry and oxygen content of the anion give these salts extensive hydrogen bonding capability which further results in the high densities, low water solubilities, and high thermal stabilities (Td> 200 °C) of these compounds. Theoretical performance calculations were carried out by using Gaussian 03 and Cheetah 5.0. The calculated detonation pressures (P) for these new salts fall between 17.5 GPa ( 10 ) and 31.7 GPa ( 4 ), and the detonation velocities (νD) range between 7022 m s?1 ( 13 ) and 8638 m s?1 ( 4 ).  相似文献   

2.
A series of amino‐triazolium salts based on 4,5‐dicyano‐1,2,3‐triazolate (C4N5) anion were synthesized for first time by means of facile deprotonation reactions. The ionic compounds were characterized by single‐crystal X‐ray diffraction, vibrational spectroscopy, and elemental analysis. The thermal stability of the salts was assessed by differential scanning calorimetry, which showed good thermal stabilities up to above 180 °C. The heats of formation of these salts were computed using the methods of isodesmic reactions. In addition, the sensitivities of the studied salts toward impact and friction were determined, and all salts were found to be neither impact (> 40 J) nor friction sensitive (> 360 N).  相似文献   

3.
Through the use of a fully C/N‐functionalized imidazole‐based anion, it was possible to prepare nitrogen‐ and oxygen‐rich energetic salts. When N,N‐dinitramino imidazole was paired with nitrogen‐rich bases, versatile ionic derivatives were prepared and fully characterized by IR, and 1H, and 13C NMR spectroscopy and elemental analysis. Both experimental and theoretical evaluations show promising properties for these energetic compounds, such as high density, positive heats of formation, good oxygen balance, and acceptable stabilities. The energetic salts exhibit promising energetic performance comparable to the benchmark explosive RDX (1,3,5‐trinitrotriazacyclohexane).  相似文献   

4.
Three energetic salts of cyclo‐N5? were synthesized via a metathesis reaction of barium pentazolate and sulfates which was driven by the precipitation of BaSO4. All the energetic cyclo‐N5? salts were characterized by single‐crystal X‐ray diffraction, infrared (IR), 1H and 13C multinuclear NMR spectroscopies, thermal analysis (TGA and DSC), and elemental analysis. The salts exhibit relatively good detonation performance with low sensitivities and good thermal stabilities. This new method opens the door to exploring more pentazolate anion‐containing high‐performance energetic materials.  相似文献   

5.
Energetic salts composed of ureido, furazan, and tetrazole were prepared by simple and efficient chemical routes to explore new insensitive and thermostable energetic materials. 3‐Ureido‐4‐tetrazole‐furazan ( 3 ) and its ammonium salt ( 5 ) and hydrazinium salt ( 6 ) were confirmed by single‐crystal X‐ray diffraction. The thermal stabilities of the synthesized salts were studied using differential scanning calorimetry, and the detonation performances of these salts were calculated using EXPLO 5 V6.01. All the salts exhibit good thermal stability (Td: 148–259 °C) and mechanical sensitivities (IS > 40 J, FS > 360 N), and their detonation velocities range from 7316 to 8655 m · s–1. Compounds 6 and 10 are potential candidates as novel insensitive and heat‐resistant explosives because of their high detonation temperatures of 247 and 256 °C, good detonation velocities of 8432 and 8523 m · s–1, and good detonation pressures of 25.6 and 26.8 GPa.  相似文献   

6.
Two salts based on 1H,1′H‐5,5′‐bitetrazole‐1,1′‐diolate (BTO) anion with pyrazole ( 1 ) and imidazole ( 2 ) cations were synthesized with metathesis reactions. Structural characterization was accomplished for them by using the element analysis, Fourier transform infrared spectroscopy (FT‐IR), NMR and mass spectrum, and X‐ray single crystal diffraction. Thermal analysis for the title salts were determined by means of differential scanning calorimetry (DSC) and thermogravimetry‐derivative thermogravimetry (TG‐DTG) as well as the calculation of non‐isothermal kinetic parameters. Consequently, both salts shown acceptable thermal stabilities as the decomposition temperatures were over 200 °C. The enthalpies of formation were calculated for these salts using the measured combustion energies with a result of 70.6 kJ · mol–1 for 1 and –47.8 kJ · mol–1 for 2 , respectively. Impact and friction sensitivities were also tested and the results indicated that these salts both have low sensitivities (>40 J, 120 N). The title energetic salts possess acceptable performance, they can therefore be applied in the field of energetic materials.  相似文献   

7.
5,5′‐Bistetrazole‐1,1′‐diolate‐based energetic salts from alkaline (Li+, K+, and Na+) and alkaline earth metal salts (Mg2+, Ca2+, and Ba2+) were synthesized in a simple, straightforward manner and were characterized by IR and NMR spectroscopy, and elemental analysis. Single‐crystal X‐ray diffraction of 4 salts (Li+, Na+, K+, and Mg2+) is given. The X‐ray structures show that in the title compounds, the metal atoms are bonded to the nitrogen and oxygen in the bistetrazole ring to form the sandwich structure. In addition, thermal stabilities of all title compounds were determined with differential thermal analysis‐thermal gravity analysis. All these new materials exhibit excellent thermal stabilities, high density, and excellent insensitivity to impact (h 50 > 60 cm). Especially, the potassium salt is of interest as potential “green heat‐resistance explosive” with high density and high thermal stability as well as low sensitivity.  相似文献   

8.
New energetic bis(2, 2‐dinitroethyl‐N‐nitro)ethylenediamine‐based salts exhibiting moderate physical properties, good detonation properties, and relatively low impact sensitivities were synthesized in high yield by direct reactions of bis(2, 2‐dinitroethyl‐N‐nitro)ethylenediamine with organic bases. The resulting salts were fully characterized by multinuclear NMR spectroscopy (1H and 13C), vibrational spectroscopy (IR), differential scanning calorimetry (DSC), and elemental analysis. Solid‐state 15N NMR spectroscopy was used as an effective technique to further determine the structure of some products. Thermal decomposition kinetics and several thermodynamic parameters of some salts were obtained under non‐isothermal conditions by DSC. The densities of the energetic salts paired with organic cations were in the range 1.60–1.89 g · cm–3 as measured with a gas pycnometer. Based on the measured densities and calculated heats of formation, detonation pressures and velocities were calculated using Explo 5.05 and found to be 23.6–44.8 GPa and 7790–9583 m · s–1, respectively, which make them potentially useful as energetic materials.  相似文献   

9.
High‐density energetic salts that are comprised of nitrogen‐rich cations and the 3,4,5‐trinitropyrazolate anion were synthesized in high yield by neutralization or metathesis reactions. The resulting salts were fully characterized by 1H, 13C NMR, and IR spectroscopy; differential scanning calorimetry; and elemental analysis. Additionally, the structures of the 3,5‐diaminotriazolium and triaminoguanidinium 3,4,5‐trinitropyrazolates were confirmed by single‐crystal X‐ray diffraction. Based on the measured densities and calculated heats of formation, the detonation performances (pressure: 23.74–31.89 GPa; velocity: 7586–8543 ms?1; Cheetah 5.0) of the 3,4,5‐trinitropyrazolate salts are comparable with 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB; 31.15 GPa and 8114 ms?1). Impact sensitivities were determined to be no less than 35 J by hammer tests, which places these salts in the insensitive class.  相似文献   

10.
3,4‐Diaminofurazan was conveniently converted into energetic salts of 3,4‐dinitraminofurazan that were paired with nitrogen‐rich cations in fewer than three steps. Seven energetic salts were prepared and fully characterized by multinuclear (1H, 13C) NMR and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analysis. In addition, the structures of the ammonium salt ( 2 ), hydrazinium salt ( 4 ), hydroxylammonium salt ( 5 ), aminoguanidinium salt ( 7 ), diaminoguanidinium salt ( 8 ) and triaminoguanidinium salt of 3,4‐dinitraminofurazan ( 9 ) were further confirmed by single‐crystal X‐ray diffraction. The densities of these salts were between 1.673 ( 8 ) and 1.791 g cm?3 ( 5 ), whilst their oxygen balances were between ?48.20 % ( 9 ) and ?6.25 % ( 5 ). These salts showed high thermal stabilities, with decomposition temperatures between 179 ( 5 ) and 283 °C ( 6 ). Their sensitivities towards impact and friction were measured by BAM equipment to be between <1 J ( 9 ) and >40 J ( 6 – 8 ) and 64 N ( 9 ) and >360 N ( 6 ), respectively. The detonation performance of these compounds, which was calculated by using the EXPLO5 program, revealed detonation pressures of between 28.0 ( 6 ) and 40.5 GPa ( 5 ) and detonation velocities of between 8404 ( 6 ) and 9407 m s?1 ( 5 ).  相似文献   

11.
6-(3,5-Dimethylpyrazol-1-yl)-3-(2,4,6-trinitroanilino)-1,2,4,5-tetrazin (1) has been synthesized and characterized by ^1H NMR, MS, elemental analysis, infrared spectra and thermal analyses. The crystal structure was determined by X-ray diffraction method. 1 is crystallized in P21/c space group of monoclinic crystal system, and exhibits good physical properties, such as high densities (〉 1.55 g·cm^-3) and good thermal stabilities (Td〉220 ℃). The intrermolecular hydrogen bonds construct the P- and M-helices from organic molecules and may contribute to the high melting points.  相似文献   

12.
alt‐Copoly[1,9‐decaphenylpentasiloxanylene/1,3‐bis(ethylene)tetramethyldisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,5‐bis(ethylene)hexamethyltrisiloxanylene], alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,7‐bis(ethylene)octamethyltetrasiloxanylene], and alt‐copoly[1,9‐decaphenylpentasiloxanylene/1,9‐bis(ethylene)decamethylpentasiloxanylene] were synthesized by Pt‐catalyzed hydrosilylation reactions of 1,9 divinyldecaphenylpentasiloxanes with a series of oligodimethylsiloxanes. The molecular weights of these copolymers were determined by gel permeation chromatography. Their glass‐transition temperatures (Tg's) were obtained by differential scanning calorimetry. The thermal stabilities of the copolymers were measured by thermogravimetric analysis. The structures of the copolymers were verified by 1H, 13C, and 29Si NMR as well as IR and UV spectroscopy. The copolymers displayed high thermal stabilities and a single Tg, indicating that phase separation between the two short blocks did not occur. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6146–6152, 2005  相似文献   

13.
Energetic salts that contain nitrogen‐rich cations and the 2‐(dinitromethyl)‐3‐nitro‐1, 3‐diazacyclopent‐1‐ene anion were synthesized in high yield by direct neutralization reactions. The resulting salts were fully characterized by multinuclear NMR spectroscopy (1H and 13C), vibrational spectroscopy (IR), elemental analysis, density and differential scanning calorimetry (DSC), and elemental analysis. Additionally, the structures of the ammonium ( 1 ) and isopropylideneaminoguanidinium ( 9 ) 2‐(dinitromethyl)‐3‐nitro‐1, 3‐diazacyclopent‐l‐ene salts were confirmed by single‐crystal X‐ray diffraction. Solid‐state 15N NMR spectroscopy was used as an effective technique to further determine the structure of some of the products. The densities of the energetic salts paired with organic cations fell between 1.50 and 1.79 g · cm–3 as measured by a gas pycnometer. Based on the measured densities and calculated heats of formation, detonation pressures and velocities were calculated using Explo 5.05 and found to to be 25.2–35.5 GPa and 7949–9004 m · s–1, respectively, which make them competitive energetic materials.  相似文献   

14.
Nitrogen‐rich 3, 4‐bis(1H‐tetrazol‐5‐yl)furoxan (H2BTF, 2 ) and its energetic salts with excellent thermal stability were successfully synthesized and fully characterized by 1H, and 13C NMR, and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analyses. Additionally, the structures of barium ( 3 ) and 1‐methyl‐3, 4, 5‐triamino‐triazolium ( 10 ) salts were confirmed by single‐crystal X‐ray diffraction. The densities of the energetic salts paired with organic cations range between 1.56 and 1.85 g · cm–3 as measured by a gas pycnometer. Based on the measured densities and calculated heats of formation, the detonation pressures and velocities are calculated to be in the range 23.4–32.0 GPa and 7939–8915 m · s–1, which make them competitive energetic materials.  相似文献   

15.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

16.
Two nitrogen‐rich alkali metal salts based on nitrogen‐rich anion [Zn(bta)2]2–: {[Na2Zn(bta)2(H2O)8] · H2O}n ( 1 ) and {[K2Zn(bta)2(H2O)4]}n ( 2 ) were synthesized by reactions of alkali hydroxide, N,N‐bis(1H‐tetrazol‐5‐yl)amine (H2bta), and zinc chloride in aqueous solutions. The crystal structures of 1 and 2 were determined by low temperature single‐crystal X‐ray diffraction and fully characterized by elemental analysis and FT‐IR spectroscopy. The structures demonstrate that an infinite 1‐dimensional (1D) chain structure is constructed by Na+ ions and bridging water molecules in compound 1 , which is connected by extensive hydrogen bonds forming a complex 3D network, whereas compound 2 features a more complicated 3D metal‐organic framework (MOF). The thermal behaviors of 1 and 2 were investigated by differential scanning calorimetry (DSC) measurements. The DSC results illustrate that both compounds exhibit high thermal stabilities (decomposition temperature > 345 °C). In addition, the heats of formation were calculated on the basis of the experimental constant‐volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities towards impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.  相似文献   

17.
Bis(4‐nitraminofurazanyl‐3‐azoxy)azofurazan ( 1 ) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine‐furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD: 9541 m s?1; P: 40.5 GPa), and 4 (vD: 9256 m s?1; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD: 8724 m s?1; P: 35.2 GPa) and HMX (vD: 9059 m s?1; P: 39.2 GPa).  相似文献   

18.
Magnesium azotetrazole‐1,1′‐dioxide ( 1 ) was first prepared and intensively characterized by single‐crystal X‐ray diffraction, IR spectroscopy, mass spectrometry, elemental analysis, and DSC measurements. The heat of formation was calculated using the atomization energy method based on quantum chemistry and the heat of detonation was also predicted. The NBO analysis was performed for inspecting charge distributions. The sensitivities towards impact and friction were tested using the BAM standard. The high detonation performance (5289 kJ · kg–1), good thermal stabilities (245.5 °C) and excellent insensitivity (39.2 J and >360 N) as well as clean decomposition products supports it of great interest as a promising candidate of green insensitive energetic materials.  相似文献   

19.
The straightforward synthesis and energetic properties of a new class of energetic materials, 1,2,3‐triazolo‐ [4,5‐e]furazano[3,4‐b]pyrazine 6‐oxide and its energetic salts are described. They were characterized by IR and multinuclear NMR spectroscopy, elemental analysis, differential scanning calorimetry, and single‐crystal X‐ray diffraction are given. The X‐ray structures show that in the title compound, the hydrogen atom is bonded to the nitrogen in the pyrazine ring; however, in the salts, the negative charge is associated with the triazole nitrogen. Heats of formation for all compounds were calculated with the G2 method and then combined with experimentally determined densities to obtain detonation pressures (P) and velocities (D) by using EXPLO5 program. These new materials exhibit good densities and thermal stabilities, high heats of formation, acceptable detonation properties, and are insensitive to impact.  相似文献   

20.
Symmetric bisimidazolium picrates were synthesized by the quaternization of bisimidazolylmethylene and a metathesis reaction with silver picrate. The symmetric structures of the new picrate salts were confirmed by 1H and 13C NMR spectral analysis and ESI‐MS. The structures of compounds 3a and 4a were also confirmed by X‐ray single crystal diffusion. The thermal properties of the compounds were determined by differential scanning calorimetry and thermogravimetric analysis. The picrates showed better thermal stabilities than did traditional azolium‐based ionic salts, with higher decomposition temperatures, and 3b had the lowest melting point. These results indicated that the electronic effect of the substituent groups obviously influenced the quaternization and the high‐energetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号