首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dye‐sensitized solar cell (DSSC) containing a TiO2 film treated with COOH‐functionalized germanium nanoparticles (Ge COOH Nps) exhibited a higher short‐circuit photocurrent density (Jsc; 15.4 mA cm−2) compared to the corresponding untreated DSSC (13.4 mA cm−2) using N719 and a 12 μm thick TiO2 film at 100 mW cm−2. The amount of N719 attached to the treated TiO2 film was 21 % greater than that attached to the untreated TiO2 film. Enhancement of the Jsc value by 15 % was attributed mostly to an intramolecular charge transfer from N719 attached to the Ge COOH Nps to the TiO2 conduction band through the Ge COOH Nps.  相似文献   

2.
Preparation parameter of dye plays important role in determining DSSC performance. This paper reports the influence of N719 dye dipping temperature on the optical properties and performance parameters of the DSSC utilizing TiO2 films prepared via microwave technique. The TiO2 coated N719 dye films were prepared at various temperatures, namely, 30, 50, 60, 70 and 80°C. It is found that the TiO2 film dipped into N719 dye solution at 50°C possesses the broadest optical absorption window and the highest dye loading. It is also found that the dye dipping temperature does not affect the leak current in the device. The short-circuit current density (JSC) and power conversion efficiency (η) are strongly influenced by the dipping temperature. The DSSC utilizing the sample prepared at 50°C demonstrated the highest JSC and η of 4.06 mA cm–2 and 1.36%, respectively due to highest dye loading and recombination resistance.  相似文献   

3.
This paper is concerned with a study of the influence of synthesis temperature on the properties of TiO2 films and the performance of dye-sensitized solar cell (DSSC). The TiO2 film samples synthesized via liquid phase deposition for 5 h at various temperatures, namely, 40, 50, 60, 70 and 80°C. It was found that the morphological shape of the film changes with growth temperature. The optical absorption increases with growth temperature. However, the photoluminescence decreases with growth temperature. These TiO2 samples were applied in a DSSC of ITO/TiO2/electrolyte/platinum. The DSSC utilizing the sample grown at 40°C demonstrated the highest photovoltaic parameters with the Jsc, and η of 1.40 mA cm–2 and 0.44% respectively. This is due to the smallest grain size of TiO2 films and the smallest bulk resistance of the device.  相似文献   

4.
New hemicyanine dyes ( CM101 , CM102 , CM103 , and CM104 ) in which tetrahydroquinoline derivatives are used as electron donors and N‐(carboxymethyl)‐pyridinium is used as an electron acceptor and anchoring group were designed and synthesized for dye‐sensitized solar cells (DSSCs). Compared with corresponding dyes that have cyanoacetic acid as the acceptor, N‐(carboxymethyl)‐pyridinium has a stronger electron‐withdrawing ability, which causes the absorption maximum of dyes to be redshifted. The photovoltaic performance of the DSSCs based on dyes CM101 – CM104 markedly depends on the molecular structures of the dyes in terms of the n‐hexyl chains and methoxyl. The device sensitized by dye CM104 achieved the best conversion efficiency of 7.0 % (Jsc=13.4 mA cm?2, Voc=704 mV, FF=74.8 %) under AM 1.5 irradiation (100 mW cm?2). In contrast, the device sensitized by reference dye CMR104 with the same donor but the cyanoacetic acid as the acceptor gave an efficiency of 3.4 % (Jsc=6.2 mA cm?2, Voc=730 mV, FF=74.8 %). Under the same conditions, the cell fabricated with N719 sensitized porous TiO2 exhibited an efficiency of 7.9 % (Jsc=15.4 mA cm?2, Voc=723 mV, FF=72.3 %). The dyes CM101 – CM104 show a broader spectral response compared with the reference dyes CMR101 – CMR104 and have high IPCE exceeding 90 % from 450 to 580 nm. Considering the reflection of sunlight, the photoelectric conversion efficiency could be almost 100 % during this region.  相似文献   

5.
In this work, we have prepared Al-doped TiO2 nanoparticles via a hydrothermal method and used it for making photoanode in dye-sensitized solar cell (DSSC). Material characterizations were done using XRD, AFM, SEM, TEM and EDAX. XPS results reveal that Al is introduced successfully into the structure of TiO2 creating new impurity energy levels in the forbidden gap. This resulted in tuning of the conduction band of TiO2 and reduced charge recombination which led to better current conversion efficiency of DSSC. Greater dye loading and enhanced surface area was obtained for Al-doped TiO2 compared to un-doped TiO2. I-V analysis, EIS and Bode plots are employed to evaluate photovoltaic performance. The short-circuit current density (J sc) and efficiency (η) of cell employing Al-doped TiO2 photoanode were extensively enhanced compared to the cell using un-doped TiO2. The optical band gap (E g) for Al-doped and un-doped TiO2 was obtained as 2.8 and 3.2 eV, respectively. J sc and η were 13.39 mAcm?2 and 4.27%, respectively, under illumination of 100 mWcm?2 light intensity when thin films of 1% Al-doped TiO2 was employed as photoanode in DSSC using N719 as the sensitizer dye. With the use of un-doped TiO2 as photoanode under similar conditions, J sc 5.12 mAcm?2 and η 1.06% only could be obtained. The maximum IPCE% obtained with Al-doped TiO2 and un-doped TiO2 was 67 and 38% respectively at the characteristic wavelength of dye (λ max = 540 nm). The EIS analyses revealed resistive and capacitive elements that provided an insight into various interfacial processes in terms of the charge transport. It was observed that Al-doping reduced the interfacial resistance leading to better charge transport which has improved both photocurrent density and conversion efficiency. Higher electron mobility and fast diffusion resulting in greater charge collection efficiency was obtained for Al-doped TiO2 compared to the un-doped TiO2. Using the Mott–Schottky plot, the donor density was calculated for un-doped and Al-doped TiO2. The work demonstrated that the Al-doped TiO2 is potential photoanode material for low-cost and high-efficiency DSSC.  相似文献   

6.
The morphology of photovoltaic material is able to influence of the performance of photoelectrochemical cell. Polyvinylpyrrolidone (PVP), cetyltrimethylammonium bromide (CTAB), and hexamethylenetetramine (HMT) surfactant were used to modify the morphology nanostructure of TiO2 films by a simple technique, namely, liquid phase deposition during their growth process. It was found that the untreated surfactant TiO2 film produces the morphology with the mixture nanosphere and nanoflower. The film treated with PVP, CTAB, and HMT produce the nanostructure shape of nanoflower, nanowire, and nanorod, respectively. These TiO2 samples were utilized as photovoltaic materials in a photoelectrochemical cell of ITO/TiO2/electrolyte/platinum. It was found that the photovoltaic parameters such as short-circuit current density (J sc), open-circuit voltage (V oc) and fill factor are influenced by the morphology in terms of shape and particle size of the TiO2 nanostructure. The cell utilizing the TiO2 nanowire treated with PVP possesses the highest J sc and V oc of 0.100 mAcm?2 and 0.44 V. The length of the TiO2 nanowire is 6?±?2 nm, while the cell with the untreated surfactant TiO2 sample demonstrates the lowest performance. It was also found that the J sc and V oc increase with the decrease in the length of the TiO2 nanostructures. The smallest length of TiO2 possesses the best interfacial contact at TiO2/electrolyte containing iodide/triiodide redox couple. Thus, the redox reaction is optimized at this interface.  相似文献   

7.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

8.
Nanocrystalline N–Zn/TiO2 anode films were prepared by doping element N and Zn. These element-doped films have a better performance in dye-sensitized solar cell than the non-doped film. The test shows that the best thickness of N–Zn/TiO2 anode film is 13.5 μm. UV–Visible measurements show that there is a complementarity in ultraviolet–visible absorbance range between P3OT and N719, both are used as dyes in this study, the former is prepared and the latter is commercially available. SEM shows a significant mass increase of anode film after treated with TiCl4. Solar cells based on N–Zn/TiO2 anode film with TiCl4 treatment was firstly co-sensitized by N719/P3OT. A solar-to-electric energy conversion efficiency of 3.54 % was obtained. Compared with the traditional dye-sensitized solar cell, the photoelectric conversion efficiency, V oc and J sc have been increased.  相似文献   

9.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

10.
Three new triphenylamine dyes that contain alkylthio‐substituted thiophenes with a low bandgap as a π‐conjugated bridge unit were designed and synthesized for organic dye‐sensitized solar cells (DSSCs). The effects of the structural differences in terms of the position, number, and shape of the alkylthio substituents in the thiophene bridge on the photophysical properties of the dye and the photovoltaic performance of the DSSC were investigated. The introduction of an alkylthio substituent at the 3‐position of thiophene led to a decrease in the degree of redshift and the value of the molar extinction coefficient of the charge‐transfer band, and the substituent with a bridged structure led to a larger redshift than that of the open‐chain structure. The introduction of bulky and hydrophobic side chains decreased the short‐circuit photocurrent (Jsc), which was caused by the reduced amount of dye adsorbed on TiO2. This resulted in a decrease in the overall conversion efficiency (η), even though it could improve the open‐circuit voltage (Voc) due to the retardation of charge recombination. Furthermore, the change in solvents for TiO2 sensitization had a critical effect on the performance of the resulting DSSCs due to the different amounts of dye adsorbed. Based on the optimized dye bath and molecular structure, the ethylene dithio‐substituted dye ( ATT3 ) showed a prominent solar‐to‐electricity conversion efficiency of 5.20 %.  相似文献   

11.
Zn2SnO4 nanocrystals were synthesized and first used as the electrode materials for the metal-free indoline dyes sensitized solar cells (DSSCs). The highest efficiency of 3.08% was achieved for a D131 DSSC. This might be attributed to the fact that the D131 dye has a greater positive oxidation potential, which can lead to rapid dye regeneration, avoiding the geminate charge recombination between oxidized dye molecules and injected electrons in the Zn2SnO4 film. The efficiency can be improved significantly using a mixture solution of D131 and N719 dyes for which an efficiency of 3.6% was obtained.  相似文献   

12.
The efficiency of dye-sensitized nanocrystalline solar cells containing ionic liquids, composed of organic sulfonium or imidazolium iodides, or a standard organic-liquid-based electrolyte was studied, while using sensitizers based on different polypyridyl–ruthenium complexes. The dyes N-719, [cis-Ru(II)(H2dcbpy)2(NCS)2(TBA)2] and Z-907, [cis-Ru(II)(H2dcbpy)(dnbpy)(NCS)2, Z-907 having a more hydrophobic character, as well as a bidentate β-diketonato complex, [(dcbpy)2Ru(acetylacetonate)]Cl, was studied. Solar cells sensitized with the dye N-719 were more efficient than the Z-907 cells, for all electrolytes studied. Adding a co-adsorbent, the amphiphilic hexadecylmalonic acid (HDMA), to Z-907 solar cells containing an organic-liquid electrolyte resulted in increased overall light-to-electricity conversion efficiencies, from 3.7% to 4.0%, (100 W m−2, AM 1.5). Possibly, this is caused by an insulating hydrophobic barrier formed to suppress unwanted electron losses. By applying TiO2 (P25) nanoparticles, assumed to support electron transfer reactions, to the organic-liquid electrolyte, the conversion efficiency was increased from 4.1% to 4.6% (100 W m−2, AM 1.5). In 1000 W m−2 illumination, the highest overall short-circuit current density, 9.3 mA cm−2, was achieved with the N-719 sensitized cells, with the TiO2 nanocomposite-containing organic-liquid-based electrolyte. For solar cells sensitized with N-719, Z-907 or the β-diketonato complex, and containing imidazolium or sulfonium iodide ionic liquids, no improvements of the overall conversion efficiency could be noticed at addition of HDMA to the dye or nanoparticles to the electrolyte.  相似文献   

13.
We present a simple sol-gel hydrothermal process for the fabrication of a double-layered structure composed of a TiO2 nanorod overlayer and TiO2 nanoparticle-embedded ZnO nanoflower (ZNFs@TNPs-TNRs) underlayer. The ZNFs@TNPs-TNRs was used as a photoanode in dye-sensitized solar cells (DSSCs) and their photovoltaic performance was analyzed. The ZNFs@TNPs-TNRs can enhance the adsorption of N719 dyes, charge transport, and light scattering. The cell performances can be maximized by optimizing thickness ratio and total thickness of the double-layered photoanode, and the preliminary results demonstrate that a promising power conversion efficiency (PCE) of 8.01% is determined on the DSSC with ZNFs@TNPs-TNRs anode, yielding a 28.9% enhancement in the PCE in comparison to pristine TiO2–P25 nanoparticle-based DSSC.  相似文献   

14.
《先进技术聚合物》2018,29(1):401-406
Polypyrrole films on fluorine doped tin oxide (FTO)‐coated glass substrate were prepared in situ by placing FTO/glass substrates where pyrrole was polymerized by methyl orange‐ferric chloride complex. The atomic force microscopy image indicated growth of acicular nanorods of polypyrrole. These films exhibited catalytic activity towards I3/I redox couple and have been investigated for counter electrode application in dye‐sensitized solar cell (DSSC). The fabricated DSSC with N719 dye/TiO2 as photoanode, and PPy/FTO as counter electrode shows ~1.7% efficiency.  相似文献   

15.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

16.
Hexamethylenetetramine (HMT) surfactant was used to modify the morphology of TiO2 thin film nanostructure prepared by a simple technique, namely, liquid phase deposition (LPD) during its growth process. In order to obtain various surface morphologies of TiO2 nanostructures, the concentration of HMT was varied from 10 to 100 mM. It was found that with an increase in concentration of HMT, the morphology of TiO2 nanorod in term of its grain size decreases due to the particles agglomeration grown on the surface. The TiO2 nanostructures with various grain sizes were utilized as photovoltaic materials in photoelectrochemical cell measurement. The highest performance of the cell in terms of the short-circuit current density, J sc was 0.069 mA cm?2. This result was achieved from the TiO2 nanorod cell with the smallest grain size, 12 ± 2 nm. The J sc of the cell increased with concentration of HMT. The cell utilizing the TiO2 nanostructure with the smallest grain size possessed the best interfacial contact at the TiO2/electrolyte containing iodide/triiodide redox couple. Thus, the redox reaction was optimised at this interface.  相似文献   

17.
Three novel hyperbranched conjugated polymers (H-tpa, H-cya, and H-pca) with the same conjugated core structure and different functional terminal units were synthesized and applied in dye-sensitized solar cells (DSSCs) as photosensitizers. The photophysical, electrochemical and photovoltaic properties of the three hyperbranched conjugated polymers (HBPs) were investigated in detail. The results showed that donor-π-acceptor architecture in hyperbranched molecule benefited intramolecular charge transfer and consequently increased the generation of photocurrent. The three-dimensional (3D) steric configuration of HBPs could effectively suppress the aggregation of dyes on TiO2 film, which is beneficial for achieving good photovoltaic performances. Among the three hyperbranched dyes, the highest power conversion efficiency (η) of 3.93% (Jsc = 8.78 mA/cm2, Voc = 0.65 V, FF = 0.688) was obtained with a DSSC based on H-pca dye upon the addition of the same mass ratio chenodeoxycholic acid (CDCA) as coadsorbent under AM 1.5 irradiation with 100 mW/cm2 simulated sunlight.  相似文献   

18.
Three new triphenylamine-based dyes with Y-shaped conformation bearing triphenylamino-vinyl, 10-octyl-10H-phenothiazine-vinyl and 9-octyl-9H-carbazole-vinyl as arms (TT, TP, and TC) have been synthesized. From electrochemical investigations it is found that they can be employed in DSSCs due to the balanced HOMO and LUMO energy levels. Notably, the photo-to-electrical conversion efficiency of the DSSCs sensitized with branched TT, TP, and TC reach 5.12%, 4.84%, and 3.63%, which are higher than that sensitized with T (2.79%), and the DSSC sensitized with TT shows higher IPCE response and better photovoltaic performances (Jsc=12.37 mA/cm2, Voc=0.72 V and ff=0.58) than others. These results reveal that the introduction of branched Y-shaped extended π-conjugated donors to D-π-A dyes cannot only enlarge the spectral response range, but also suppress the molecular aggregation on TiO2 films to a certain extent, which would enhance the performance of DSSCs.  相似文献   

19.
Discotic mesogenic molecules viz., hexahexylthiotriphenylene (HHTT) and hexahexyloxytriphenylene were applied, for the first time, as iodine-free redox electrolyte in dye-sensitised solar cells (DSSCs). The cell shows open circuit voltage (Voc) of 0.95 V, short circuit current density (Jsc) of 0.534 mA/cm2, fill factor 88.24% and overall power conversion efficiency (η) 0.45% in a typical fluorine doped tin oxide/TiO2/N719/HHTT/Pt DSSC configuration. Scanning electron microscopy was used to study surface profile of electrolytes while electrochemical impedance spectroscopy was used to understand the electrochemical behaviour of electrolytes. The photovoltaic parameters were measured under standard conditions using Oriel solar simulator class AAA. These first results demonstrate the potential of the discotic molecules as charge transporter and mediator and show promise to be used in iodine-free DSSCs.  相似文献   

20.
Ruthenium (II) complex dye, Ru(4,4'-dicarboxyl-2,2'-bipyridine)(4-nonyl-2,2'-bipyridine) (NCS)(2), (denoted as RuC9) tethering single alkyl chain was synthesized and well characterized. Its adsorption behavior onto the mesoporous TiO(2) and photovoltaic properties were compared with Z907 which has similar chemical structure but tethers two alkyl chains. RuC9 dyes tend to aggregate into vesicles in the acetonitrile/t-butanol co-solvent as a result of the amphiphilic structure, whereas Z907 dyes aggregate into lamellae. The dye-sensitized solar cell (DSSC) with RuC9 dye showed higher short-circuit photocurrent than that with Z907, attributing to its higher molar optical extinction coefficient and more adsorption amount onto the mesoporous TiO(2). However, the DSSC with Z907 dye has higher open-circuit photovoltage and power conversion efficiency, presumably due to the fact that Z907 with more alkyl chains formed a molecular layer with higher hydrophobicity. It reduced the charge recombination in the interface between the dye-sensitized mesoporous TiO(2) and electrolyte as verified by the electrochemical impedance spectroscopy and intensity modulated photocurrent and photovoltage spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号