首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
2.
3.
We describe a method for docking of a scaffold-based series and present its advantages over docking of individual ligands, for determining the binding mode of a molecular scaffold in a binding site. The method has been applied to eight different scaffolds of protein kinase inhibitors (PKI). A single analog of each of these eight scaffolds was previously crystallized with different protein kinases. We have used FlexX to dock a set of molecules that share the same scaffold, rather than docking a single molecule. The main mode of binding is determined by the mode of binding of the largest cluster among the docked molecules that share a scaffold. Clustering is based on our 'nearest single neighbor' method [J. Chem. Inf. Comput. Sci., 43 (2003) 208-217]. Additional criteria are applied in those cases in which more than one significant binding mode is found. Using the proposed method, most of the crystallographic binding modes of these scaffolds were reconstructed. Alternative modes, that have not been detected yet by experiments, could also be identified. The method was applied to predict the binding mode of an additional molecular scaffold that was not yet reported and the predicted binding mode has been found to be very similar to experimental results for a closely related scaffold. We suggest that this approach be used as a virtual screening tool for scaffold-based design processes.  相似文献   

4.
Kim IC  Hamilton AD 《Organic letters》2006,8(9):1751-1754
[structure: see text] The design of a nonpeptidic scaffold based on 4,7-diphenyl-1,6-disubstituted indanes mimicking i, i+3, i+4, and i+7 residues of an alpha-helix has been described, and its synthesis has been accomplished. This strategy makes general approaches possible to helix mimetic scaffolds that could be targeted to different proteins by changing the nature of the substituents.  相似文献   

5.

Wee1 is cell cycle protein comprising a kinase domain and is a validated cancer target. We have designed molecules with variable tricyclic core scaffolds [6-6-5] system and extended them based on the chemical space available in the active site of Wee1 kinase using de novo drug design. The core scaffolds and linking fragments were extracted from pharmacophore-based virtual screening of ZINC and PubChem databases and Ludi library. These molecules bind the hinge region of kinase active site and form hydrogen bonds as confirmed from molecular docking, molecular dynamics simulations, and MM_PBSA calculations. When compared with reference inhibitors, AZD1775 and PHA-848125, the de novo designed molecules also show good docking scores and stability, retained non-covalent interactions, and high binding free energies contributed from active site residues.

  相似文献   

6.
New approaches for identifying small molecules that specifically target protein surfaces as opposed to active site clefts are of much current interest. Toward this goal, we describe a three-step methodology: in step one, we target a protein of interest by directed evolution of a small beta-sheet scaffold; in step two, we identify residues on the scaffold that are implicated in binding; and in step three, we transfer the chemical information from the beta-sheet to a small molecule mimic. As a case study, we targeted the proteolytic enzyme thrombin, involved in blood coagulation, utilizing a library of beta-sheet epitopes displayed on phage that were previously selected for conservation of structure. We found that the thrombin-binding, beta-sheet displaying mini-proteins retained their structure and stability while inhibiting thrombin at low micromolar inhibition constants. A conserved dityrosine recognition motif separated by 9.2 A was found to be common among the mini-protein inhibitors and was further verified by alanine scanning. A molecule containing two tyrosine residues separated by a linker that matched the spacing on the beta-sheet scaffold inhibited thrombin, whereas a similar dityrosine molecule separated by a shorter 6 A linker could not. Moreover, kinetic analysis revealed that both the mini-protein as well as its minimalist mimic with only two functional residues exhibited noncompetitive inhibition of thrombin. Thus, this reductionist approach affords a simple methodology for transferring information from structured protein scaffolds to yield small molecule leads for targeting protein surfaces with novel mechanisms of action.  相似文献   

7.
Much is now known about how protein folding occurs, through the sequence analysis of proteins of known folding geometry and the sequence/structural analysis of proteins and their mutants. This has allowed not only the modification of natural proteins but also the construction of de novo polypeptides with predictable folding patterns. Structure/function analysis of natural proteins is used to construct derived versions that retain a degree of biological activity. The constructed versions made of either natural or artificial sequences contain critical residues for activity such as receptor binding. In some cases, the functionality is introduced by incorporating binding sites for other elements, such as organic cofactors or transition metals, into the protein scaffold. While these modified proteins can mimic the function of natural proteins, they can also be constructed to have novel activities. Recently engineered photoactive proteins are good examples of such systems in which a light-induced electron transfer can be established in normally light-insensitive proteins. The present review covers some aspects of protein design that have been used to investigate protein receptor binding, cofactor binding and biological electron transfer.  相似文献   

8.
Reliable determination of protein-protein interaction sites is of critical importance for structure-based design of small molecules modulating protein function through macromolecular interfaces. We present an alignment-free computational method for prediction of protein-protein interface residues. The method ("iPred") is based on a knowledge-based scoring function adapted from the field of protein folding and small molecule docking. Based on a training set of 394 hetero-dimeric proteins iPred achieves sustained accuracy on an external unbound test set. Prediction robustness was assessed from more than 1500 diverse complexes containing homo- and hetero-dimers. The technique does not rely on sequence conservation, so that rapid interface identification is possible even for proteins for which homologs are unknown or lack conserved residue patterns in interface region. Functional "hot-spot" residues are enriched among the predicted interface residues, rendering the method predestined for macromolecular binding site identification and drug design studies aiming at modulating protein-protein interaction that might influence protein function. For a comparative structural model of peptidase HtrA from Helicobacter pylori, we performed mutation studies for predicted hot-spot residues, which were confirmed as functionally relevant for HtrA activity or oligomerization.  相似文献   

9.
The evaluation of the scaffold hopping potential of computational methods is of high relevance for virtual screening. For benchmark calculations, classes of known active compounds are utilized. Ideally, such classes should have a well-defined content of structurally diverse scaffolds. However, in reported benchmark investigations, the choice of activity classes is often difficult to rationalize. To provide a compendium of well-characterized test cases for the assessment of scaffold hopping potential, structural distances between scaffolds were systematically calculated for compound classes available in the ChEMBL database. Nearly seven million scaffold pairs were evaluated. On the basis of the global scaffold distance distribution, a threshold value for large scaffold distances was determined. Compound data sets were ranked based on the proportion of scaffold pairs with large distances they contained, taking additional criteria into account that are relevant for virtual screening. A set of 50 activity classes is provided that represent attractive test cases for scaffold hopping analysis and benchmark calculations.  相似文献   

10.
The last stages of assembly of the aminocoumarin antibiotics, clorobiocin and coumermycin A(1), which target the GyrB subunits of bacterial DNA gyrase, involve enzymatic transfer of the pyrrolyl-2-carbonyl acyl group from a carrier protein (CloN1/CouN1) to the 3'-OH of the noviosyl moiety of the antibiotic scaffold. The enzyme, CouN7, will catalyze both the forward and back reaction on both arms of the coumermycin scaffold. This occurs via an O-acyl-Ser(101)-CouN7 intermediate, as shown by transient labeling of the enzyme with [(14)C]acetyl-S-CouN1 as donor and by inactivating mutation of the active site, Ser(101), to Ala. The intermediacy of the pyrrolyl-2-carbonyl-O-CouN7 allows net pyrrole transfer between distinct aminocoumarin scaffolds, for example, between the descarbamoylnovobiocin scaffold and coumermycin A(1) and vice versa. CouN7 also allows shuttling of surrogate acyl groups between noviosyl-aminocoumarin scaffolds to generate new antibiotic variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号