首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.  相似文献   

2.
Acenes larger than pentacene are predicted to possess enticing electronic properties, but are insoluble and prone to rapid decomposition. Utilizing a combination of functionalization strategies, we present stable, solution-processable hexacenes and an evaluation of their hole and electron transport properties.  相似文献   

3.
The electronic properties of a single layer (SL) of pentacene molecules are investigated by high-resolution UV photoemission and near-edge X-ray absorption spectroscopy in different configurations of the SL, either standing up on an aromatic self-assembled monolayer or planar on a bare Cu(001) substrate. The weakly interacting pentacene molecules in the standing-up SL present a semiconducting character, and the empty states distribution reflects that of gas-phase pentacene, while the planar pentacene-Cu system shows a metallic interface with redistribution of the empty molecular states. The highest-occupied molecular orbital lineshape in the weakly interacting SL shows a double structure, attributed to two nonequivalent molecules in the ordered configuration.  相似文献   

4.
The theoretical work presented here demonstrates that, when substitution takes place at appropriate positions, cyanation could be a useful tool for reducing the internal reorganization energy of molecules. A molecular-orbital-based explanation is given for this fundamentally important phenomenon. Some of the cyanated pentacene derivatives (nCN-PENT-n) not only have internal reorganization energies for electron transfer (lambda(-)) smaller than that of pentacene, but the lambda(-) values are even of the same magnitude as the internal reorganization energy for hole transfer (lambda(+)) of pentacene, a small value that few organic compounds have surpassed. In addition, cyanation raises the electron affinity of the parent compound and may afford good electronic couplings between neighboring molecules, because of its ability in promoting pi-stacking. For the design of high performance n-Type Organic field-effect transistors, high electron affinities, large intermolecular electronic couplings, and small reorganization energies are necessary. Cyanation may help in all three aspects. Two cyanated trialkylsilylethynyl pentacene derivatives with known pi-stacking structures are predicted to provide reasonably small internal reorganization energies, large electronic couplings, and high electron affinities. They have the potential to outperform N-fluoroalkylated dicyanoperylene-3,4:9,10-bis(dicarboximides) (PDI-FCN(2)) in terms of electron mobility.  相似文献   

5.
The G3(MP2) method has been employed to study the 1,4-addition reactions between singlet oxygen and five acenes, including benzene, naphthalene, anthrecene, tetracene, and pentacene. In all, nine pathways between O(2) and the five acenes have been investigated. Our calculated results indicate that all nine pathways are concerted and exothermic and that the most reactive sites on the acenes are the center ring's meso-carbons. In addition, reactivity increases along the series benzene < naphthalene < anthrecene < tetracene < pentacene. This trend is identical to that of aromaticity for the five acenes. A correlation between reactivity and aromaticity is briefly rationalized with natural bond orbital (NBO) analysis and frontier molecular orbital (FMO) analysis. Furthermore, some experimental kinetics data from the literature supporting the calculated results are cited.  相似文献   

6.
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.  相似文献   

7.
The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.  相似文献   

8.
[structure: see text]. Halogen functional groups on pentacene can be used both as synthetic handles for further functionalization as well as to tune the pi-stacking in these systems. The halogenated pentacene derivatives described here (X = Br, X' = H, and X = X' = F) are all stable and soluble, with reduction potentials significantly lower than that of the parent functionalized pentacene (X = X' = H). The bromopentacenes could be further elucidated to pentacene nitriles, further decreasing the acene's reduction potential, while the charge-carrier mobility in the fluorinated systems was shown to scale with the degree of fluorine substitution.  相似文献   

9.
A new class of stabilized pentacene derivatives with externally fused five‐membered rings are prepared by means of a key palladium‐catalyzed cyclopentannulation step. The target compounds are synthesized by chemical manipulation of a partially saturated 6,13‐dibromopentacene precursor that can be fully aromatized in a final step through a DDQ‐mediated dehydrogenation reaction (DDQ=2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone). The new 1,2,8,9‐tetraaryldicyclopenta[fg,qr]pentacene derivatives have narrow energy gaps of circa 1.2 eV and behave as strong electron acceptors with lowest unoccupied molecular orbital energies between ?3.81 and ?3.90 eV. Photodegradation studies reveal the new compounds are more photostable than 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene).  相似文献   

10.
The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.  相似文献   

11.
Z He  R Mao  D Liu  Q Miao 《Organic letters》2012,14(16):4190-4193
Novel silylethynylated N-heteropentacenes that have three adjacent pyrazine rings at the center of a pentacene backbone are reported. These hexaazapentacenes exhibit a record low energy level of lowest unoccupied molecular orbital (LUMO) for N-heteropentacenes and thus are able to oxidize dihydroanthracene to anthracene. Their synthetic precursors are the corresponding dihydrohexaazapentacenes, which exhibit interesting H-bonding.  相似文献   

12.
We present x-ray photoemission spectroscopy and highly resolved near-edge x-ray absorption fine structure spectroscopy measurements taken on pentacene thin films of different thicknesses deposited on a spin coated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) substrate. Thin films of pentacene were prepared by using organic molecular beam deposition in situ using strictly controlled evaporation conditions. Our investigations show that pentacene thin films on PEDOT:PSS are characterized by upright standing molecules. Due to the strong dichroic behavior, the calculated values of the molecular orientation give a clear indication not only of the real molecular arrangement in the films but also of a high orientational order. This high degree of molecular orientation order is a characteristic already of the first layer. The films show the tendency to grow on the PEDOT:PSS substrate following an island-fashion mode, with a relatively narrow intermixing zone at the interface between the pentacene and the polymer blend. The peculiarity of the growth of pentacene on PEDOT:PSS is due to the fact that the substrate does not offer any template for the nucleated films and thus exerts a lateral order toward the crystal structure arrangement. Under these conditions, the upright orientation of the molecules in the films minimizes the energy required for the system stability.  相似文献   

13.
Pentathienoacene, the thiophene equivalent of pentacene, is one of the latest additions to the family of organic crystal semiconductors with a great potential for use in thin film transistors. By using density functional theory and gas-phase ultraviolet photoelectron spectroscopy, we investigate the microscopic charge transport parameters of the pentathienoacene crystal. We find that the valence band exhibits a stronger dispersion than those in the pentacene and rubrene single crystals with marked uniaxial characteristics within the molecular layer due to the presence of one-dimensional pi-stacks; a small hole effective mass is also found along the direction perpendicular to the molecular layers. In the conduction band, strong intermolecular sulfur-sulfur interactions give rise to a significant interstack electronic coupling whereas the intrastack dispersion is greatly reduced. The intramolecular vibronic coupling (reorganization energy) is stronger than that in pentacene but comparable to that in sexithiophene; it is larger for holes than for electrons, as a result of low-frequency modes induced by the sulfur atoms. The polarization energy is large, but its effect on the vibronic coupling remains small. Charge transport is discussed in the framework of both band and hopping models.  相似文献   

14.
The influence of lattice dynamics on carrier mobility has received much attention in organic crystalline semiconductors, because the molecular components are held together by weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. Recently, it has been shown that the dynamic disorder has little effect on hole mobility in the ab plane of pentacene, but a reasonable explanation is absent for such a puzzle. To better understand the effect of lattice vibrations on carrier transport, a further study is required for other organic materials. In this work, a mixed molecular dynamic and quantum-chemical methodology is used to assess the effect of nuclear dynamics on hole mobility in the dianthra[2,3-b:2',3'-f]-thieno[3,2-b]thiophene (DATT) crystals which exhibit high air stability with the hole mobility as large as that in rubrene-based devices. It is found that the lattice vibrations lead to an increasing encumbrance for hole transport in the ab plane of the DATT crystals as the temperature increases. By comparing the crystal structures of DATT and pentacene, the reduced hole mobility in DATT is attributed to the unsymmetric arrays of nearest-neighboring molecular dimers in the ab plane, because the electronic coupling exhibits unbalanced thermal fluctuations for the nearest-neighboring dimers which then induces a stronger oscillation for carriers along the directions with asymmetric packing. To further relate the dynamic disorder with hole transport, the variations of anisotropic mobilities are also analyzed. As a result, the negligible effect of lattice dynamics on the hole mobility in pentacene is explained by the centrosymmetric molecular packing of the nearest-neighboring molecular pairs in the ab plane.  相似文献   

15.
A series of new quinodimethane-substituted terthiophene and quaterthiophene oligomers has been investigated for comparison with a previously studied quinoid oligothiophene that has demonstrated high mobilities and ambipolar transport behavior in thin-film transistor devices. Each new quinoidal thiophene derivative shows a reversible one-electron oxidation between 0.85 and 1.32 V, a quasi-reversible one-electron second oxidation between 1.37 and 1.96 V, and a reversible two-electron reduction between -0.05 and -0.23 V. The solution UV-vis-NIR spectrum of each compound is dominated by an intense (epsilon congruent with 100 000 M(-1) cm(-1)) low energy pi-pi transition that has a lambda(max) ranging between 648 and 790 nm. All X-ray crystal structures exhibit very planar quinoidal backbones and short intermolecular pi-stacking distances (3.335-3.492 A). Structures exhibit a single pi-stacking distance with parallel cofacial stacking (sulfur atoms of equivalent rings pointed in the same direction) or with alternating distances and antiparallel cofacial stacking (sulfur atoms of equivalent rings pointed in the opposite direction). Examples of the layered and herringbone-packing motifs are observed for both the parallel and the antiparallel cofacial stacking. Analysis of the X-ray structures and molecular orbital calculations indicates that all of these compounds have one-dimensional electronic band structures as a result of the pi-stacking. For structures with a unique pi-stacking distance, a simple geometric overlap parameter calculated from the shape of the molecule and the slip from perfect registry in the pi-stack correlates well with the transfer integrals (t) calculated using molecular orbital theory. The calculated valence (633 meV) and conduction (834 meV) bandwidths for a quinoid quaterthiophene structure are similar to those calculated for the benchmark pentacene and indicate that both hole and electron mobilities could be significant.  相似文献   

16.
Dinitrogen (N2) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.  相似文献   

17.
The tendency for C(60) nanowires to persist on two monolayers of recumbent pentacene is studied using molecular dynamics (MD) simulations. A review of existing experimental literature for the tilt angle adopted by pentacene on noble metal surfaces shows that studies cover a limited range from 55° to 90°, motivating simulation studies of essentially the entire range of tilt angles (10°-90°) to predict the optimum surface tilt angle for C(60) nanowire formation. The persistence of a 1D nanowire depends sensitively on this tilt angle, the amount of initial tensile strain, and the presence of surface step edges. At room temperature, C(60) nanowires oriented along the pentacene short axes persist for several nanoseconds and are more likely to occur if they reside between, or within, pentacene rows for ? ≤ ~60°. The likelihood of this persistence increases the smaller the tilt angle. Nanowires oriented along the long axes of pentacene molecules are unlikely to form. The limit of stability of nanowires was tested by raising the temperature to 400 K. Nanowires located between pentacene rows survived this temperature rise, but those located initially within pentacene rows are only stable in the range ?(1) = 30°-50°. Flatter pentacene surfaces, that is, tilt angles above about 60°, are subject to disorder caused by C(60) molecules "burrowing" into the pentacene surface. An initial strain of 5% applied to the C(60) nanowires significantly decreases the likelihood of nanowire persistence. In contrast, any appreciable surface roughness, even by half a monolayer in height of a third pentacene monolayer, strongly enhances the likelihood of nanowire formation due to the strong binding energy of C(60) molecules to step edges.  相似文献   

18.
Pentacene derivative 6,13‐dichloropentacene (DCP) is one of the latest additions to the family of organic semiconductors with a great potential for use in transistors. We carry out a detailed theoretical calculation for DCP, with systematical comparison to pentacene, pentathienoacene (PTA, the thiophene equivalent of pentacene), to gain insights in the theoretical design of organic transport materials. The charge transport parameters and carrier mobilities are investigated from the first‐principles calculations, based on the widely used Marcus electron transfer theory and quantum nuclear tunneling model, coupled with random walk simulation. Molecular structure and the crystal packing type are essential to understand the differences in their transport behaviors. With the effect of molecule modification, significant one‐dimensional π‐stacks are found within the molecular layer in PTA and DCP crystals. The charge transport along the a‐axis plays a dominant role for the carrier mobilities in the DCP crystal due to the strong transfer integrals within the a‐axis. Pentacene shows a relatively large 3D mobility. This is attributed to the relatively uniform electronic couplings, which thus provides more transport pathways. PTA has a much smaller 3D mobility than pentacene and DCP for the obvious increase of the reorganization energy with the introduction of thiophene. It is found that PTA and DCP exhibit lower HOMO (highest occupied molecular orbital) levels and better environmental stability, indicating the potential applications in organic electronics. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Acenes have long been the subject of intense study because of the unique electronic properties associated with their pi-bond topology. Recent reports of impressive semiconductor properties of larger homologues have reinvigorated research in this field, leading to new methods for their synthesis, functionalization, and purification, as well as for fabricating organic electronic components. Studies performed on high-purity acene single crystals revealed their intrinsic electronic properties and provide useful benchmarks for thin film device research. New approaches to add functionality were developed to improve the processability of these materials in solution. These new functionalization strategies have recently allowed the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied, as well as investigation of their associated structure/property relationships.  相似文献   

20.
The optical properties of pentacene (PEN) and perfluoropentacene (PFP) thin films on various SiO(2) substrates were studied using variable angle spectroscopic ellipsometry. Structural characterization was performed using x-ray reflectivity and atomic force microscopy. A uniaxial model with the optic axis normal to the sample surface was used to analyze the ellipsometry data. A strong optical anisotropy was observed, and enabled the direction of the transition dipole of the absorption bands to be determined. Furthermore, comparison of the optical constants of PEN and PFP thin films with the absorption spectra of the monomers in solution shows significant changes due to the crystalline environment. Relative to the monomer spectrum, the highest occupied molecular orbital to lowest unoccupied molecular orbital transition observed in PEN (PFP) thin film is reduced by 210 meV (280 meV). A second absorption band in the PFP thin film shows a slight blueshift (40 meV) compared to the spectrum of the monomer with its transition dipole perpendicular to that of the first absorption band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号