首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Anti-spiral waves are controlled in an oscillatory system by using a local inhomogeneity. The inhomogeneity acts as a wave source, and gives rise to the propagating plane waves. It is found that there is a critical pacemaking domain size below which no wave will be created at all. Two types of ordered waves (target waves and traveling waves) are created depending on the geometry of the local inhomogeneity. The competition between the anti-spiral waves and the ordered waves is discussed. Two different competition mechanisms were observed, which are related to the ordered waves obtained from different local inhomogeneities. It is found that traveling waves with either lower frequency or higher frequency can both eliminate the anti-spiral waves, while only the target waves with lower absolute value of frequency can eliminate the anti-spiral waves.This method also applies to outwardly rotating spiral waves. The control mechanism is intuitively explained and the control method is easily operative.  相似文献   

2.
Entrainment by a pacemaker was investigated experimentally and numerically in a chain of chemical oscillators using coupled discrete Belousov-Zhabotinsky reaction oscillators. The spontaneous frequency of each oscillator depended on the concentration of catalyst ions. The coupling strengths among the nearest neighbor oscillators were controlled by changing the spacing distance (d) between beads. When the coupling strength was sufficiently strong, the pacemaker entrained other oscillators in the chain. Subsequently, the trigger waves propagating from a pacemaker were observed. The range of trigger wave propagation area, i.e., the number of entrained oscillators, depended on d. Numerical simulation for the system described the experimental results well. Furthermore, photic noise maximized the strength of entrainment at an optimal noise intensity.  相似文献   

3.
A Monte Carlo algorithm, capable of simulating numerically the time and space dependence of chemical concentrations in a reacting system, is presented. This method is used to study the phenomenon of trigger waves in the Oregonator model of the Belousov–Zhabotinskii reaction, including the diffusion of species X and Y in one dimension. The results show that a small disturbance in a homogeneous mixture can grow into a chemical (trigger) wave propagating in space at constant velocity. The dependence of this velocity on several factors is studied, namely, initial concentrations, the diffusion of Y, and the stoichiometry of the autocatalytic step of the model. A comparison of the Monte Carlo results with a previous simulation also is discussed.  相似文献   

4.
It is well established that the photoacoustic effect based on absorption of electromagnetic radiation into thermal waves allows surface depth profiling. However, limited knowledge exists concerning its spatial resolution. The spiral-stepwise (SSW) approach combined with phase rotational analysis is utilized to determine surface depth profiling of homogeneous and nonhomogeneous multilayered polymeric surfaces in a step-scan photoacoustic FT-IR experiment. In this approach, the thermal wave propagating to the surface is represented as the integral of all heat wave vectors propagating across the sampling depth xn, and the spiral function K'beta(lambda)e(-beta)(lambda)xne(-x)n/mu(th)e(i)(omegat-(xn/mu(th))) represents the amplitude and phase of the heat wave vector propagating to the surface. The SSW approach can be applied to heterogeneous surfaces by representing thermal waves propagating to the surface as the sum of the thermal waves propagating through homogeneous layers that are integrals of all heat vectors from a given sampling depth. The proposed model is tested on multilayered polymeric surfaces and shows that the SSW approach allows semiquantitative surface imaging with the spatial resolution ranging from micrometer to 500 nm levels, and the spatial resolution is a function of the penetration depth.  相似文献   

5.
Ferric chloride-photosensitized free-radical initiation was used to generate propagating radicals in polymerization of acrylic acid (AA), methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), acrylamide (A), and diacetone acrylamide (DAA) in rigid glasses of methanol, ethanol, n-propanol, isopropanol, or acetone at near liquid nitrogen temperatures. When the temperatures of the glasses were increased, primary radicals derived from the solvents reacted with the monomers to yield propagating radicals. Formation and conformational changes of the propagating radicals at different temperatures were studied by electron spin resonance (ESR) spectroscopy. It was concluded that one type of propagating radical was formed in all cases. However, when the temperature of the rigid glass was increased, the structural conformation of the radical that initially allowed the near-equivalent interaction of the α-hydrogen and one of the β-hydrogens with the unpaired electron generated a three-line spectrum.  相似文献   

6.
Heavy atom-induced phosphorescence of organic chromophores that originates from spin?Corbit coupling (SOC) is always accompanied by fluorescence quenching concomitant with a reduction of the triplet excited state lifetime. However, such changes are typically manifest by fluorescence quenching at room temperature and phosphorescence sensitization at cryogenic temperatures. Herein we overview our efforts over the past decade in which both internal and external heavy-atom effects (HAEs) can trigger room temperature phosphorescence (RTP) with dramatic shortening of the phosphorescence radiative lifetime by several orders of magnitude. Such spectral properties render new classes of phosphorescent materials for potential use in organic light-emitting diodes (OLEDs). The molecular systems described in this paper are organic fluorophores that are ??-complexed or ??-bonded to a multinuclear d10 transition metal center, the presence of which leads to phosphorescence sensitization because of the significant SOC in such materials.  相似文献   

7.
The Heck reaction has been the subject of intense investigation in the past decade. Many new types of catalysts have been developed in addition to the existing palladium/phosphine complexes. Prominent among these are palladacycles, pincers, several types of heterogeneous palladium catalysts, colloids and ligand-free palladium, usually in the form of Pd(OAc)2. Most of the newer types function only at higher temperatures, typically between 120 and 160 degrees C. It has been shown that irrespective of the catalyst precursor, none of these catalysts are stable at these high temperatures. They all have a tendency to form soluble palladium(0) colloids or nanoparticles, certainly with less reactive substrates such as aryl bromides or chlorides. The Heck reaction takes place by attack of the arylating agent on the palladium atoms in the outer rim of the nanoparticles. This leads to formation of monomeric or dimeric anionic palladium complexes that undergo the usual steps of the Heck mechanism as described by Amatore and Jutand.  相似文献   

8.
《Electrophoresis》2018,39(2):394-405
When determining the electric field E acting on charged objects in gel electrophoresis, the electrical conductivity of the buffer solution is often overlooked; E is typically calculated by dividing the applied voltage by a separation distance between electrodes. However, as a consequence of electrolytic reactions, which occur at the electrodes, gradients in the ionic content of the buffer solution and its conductivity can potentially develop over time, thereby impacting E and affecting propagation velocities of charged objects, v, directly. Here, we explore how the types and concentrations of ionic constituents of the buffer solution, which largely control its conductivity, when used in passivated gel electrophoresis (P‐gelEP), can influence E, thereby altering v of charged nanospheres propagating through large‐pore gels. We measure the conductivity of the buffer solution in the center of the gel region near propagating bands of nanospheres, and we show that predictions of E based on conductivity closely correlate with v. We also explore P‐gelEP involving two different types of passivation agents: nonionic polyethylene glycol (PEG) and anionic sodium dodecyl sulfate (SDS). Our observations indicate that using a conductivity model to determine E from the local current density and the conductivity where spheres are propagating can lead to a better estimate than the standard approach of a voltage divided by a separation. Moreover, this conductivity model also provides a starting point for interpreting the complex behavior created by amphiphilic ionic passivation agents, such as SDS, on propagating nanospheres used in some P‐gelEP experiments.  相似文献   

9.
We address the problem of diffusion through dynamic Ising network structures using random walkers (RWs) whose net displacements are partitioned into two contributions, arising from (1) transport through neighboring "conducting" clusters and (2) self-diffusion of the site on which the RW finds itself, respectively. At finite temperatures, the conducting clusters in the network exhibit correlated dynamic behavior, making our model system different to most prior published work, which has largely been at the random percolation limit. We also present a novel heuristic scaling analysis for this system that utilizes a new scaling exponent theta(z) for representing RW trapping time as a function of "distance" from the dynamic percolation transition. Simulation results in two-dimensional networks show that when theta(z) = 2, a value found from independent physical arguments, our scaling equations appear to capture universal behavior in the system, at both the random percolation (infinite temperature) and finite temperature conditions studied. This study suggests that the model and the scaling approach given here should prove useful for studying transport in physical systems showing dynamic disorder.  相似文献   

10.
This Perspective describes a series of research projects that led the author from an interest in lithium reagents as synthetically valuable building blocks to studies aimed at understanding the science behind the empirical art developed by synthetic chemists trying to impose their will on these reactive species. Understanding lithium reagent behavior is not an easy task; since many are mixtures of aggregates, various solvates are present, and frequently new mixed aggregates are formed during their reactions with electrophiles. All of these species are typically in fast exchange at temperatures above -78 °C. Described are multinuclear NMR experiments at very low temperatures aimed at defining solution structures and dynamics and some kinetic studies, both using classic techniques as well as the rapid inject NMR (RINMR) technique, which can in favorable cases operate on multispecies solutions without the masking effect of the Curtin-Hammett principle.  相似文献   

11.
Long-period pulsating stars represent the last stage in the evolution of stars with a mass in the approximate range 1 to 9 solar masses. These pulsationally-unstable stars are variable stars with large visual amplitude. These pulsations trigger shock waves propagating through the very extended atmosphere, which in the end cause a strong mass loss. Their strong mass loss, coupled with their high frequency in the Galaxy, make these stars major contributors to the interstellar matter. Because these stars are also the site of a rich nucleosynthesis, they play a key role in the chemical evolution of the Galaxy.  相似文献   

12.
本文使用虹外光谱及膨胀计等方法,对聚四亚甲基醚二醇类多嵌段共聚物的软链段结晶性进行了研究。在聚醚-聚酯多嵌段共聚物中(PTMEG>60%),其软链段结晶的熔点和结晶速率均随PTMEG含量减少而下降。而在聚醚-聚脲胺酯多嵌段共聚物中,由于N—H和C—O—C之间氢键的作用,即使在低温下,其软链段也难于结晶。此外,高倍拉伸会提高上述二类多嵌段共聚物中软链段结晶的熔点和结晶速率。  相似文献   

13.
The transimidization reaction has been successfully utilized to prepare a series of segmented block copolyimides. The synthesis and polymerization of an AX‐type amino imide monomer containing the tetrahydro[5]helicene unit were accomplished. The AX‐type amino imide monomer is stable during isolation and purification, owing to its inert X (e.g., N‐pyridyl) group, but yet readily underwent a self‐transimidization reaction and produced polyimide. Because of the presence of two reactive ends, such an AX‐type polyimide could be incorporated into a series of block copolyimides by reaction with commercially available dianhydrides and diamines. All the copolymers showed two distinct glass‐transition temperatures, typically around 250 and 430 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3991–3996, 2000  相似文献   

14.
Nonlinear spatial temporal behavior of the iodate/thiosulfate/sulfite reaction is investigated both in a stirred and spatially extended media. In accord with the temporal dynamics in the homogeneous media, both propagating fronts and target patterns are achieved in the spatially extended medium. On increasing the iodate concentration the system evolves from exhibiting propagating fronts to circular waves and then shows target patterns and finally the iodine waves. Influences of concentrations of sulfite, thiosulfate and acid on the reaction kinetics and pattern formation are also investigated systematically, and transitions from pH waves to iodine waves can be achieved via adjusting the concentration of the three species. The propagation velocities of pH and iodine waves are understood with the quadratic and cubic autocatalysis of proton and iodide respectively.  相似文献   

15.
The size-temperature "phase diagram" for Lennard-Jones clusters LJn with sizes up to n=147 is constructed based on the analysis of the heat capacities and orientational bond order parameter distributions computed by the exchange Monte Carlo method. Two distinct types of "phase transitions" accompanied by peaks in the heat capacities are proven to be generic. Clusters with Mackay atom packing in the overlayer undergo a lower-temperature melting (or Mackay-anti-Mackay) transition that occurs within the overlayer. All clusters undergo a higher-temperature transition, which for the three-layer clusters is proven to be the 55-atom-core-melting transition. For the two-layer clusters, the core/overlayer subdivision is ambiguous, so the higher-temperature transition is better characterized as the breaking of the local icosahedral coordination symmetry. A pronounced size-specific behavior can typically be observed at low temperatures and often occurs in clusters with highly symmetric global minima. An example of such behavior is LJ135, which undergoes a low-temperature solid-solid transition, besides the two generic transitions, i.e., the overlayer reconstruction and the core melting.  相似文献   

16.
Melt of a segmented block copolymer having poly(lauryl lactam) as the hard segment and poly(tetramethylene oxide) as the soft segment was investigated by rheological techniques. Storage modulus of the polymer melt exhibits the nonterminal behavior resembling those of diblock and triblock copolymer melts, indicating the existence of a microphase‐separated structure. Contrary to block copolymers, the melt of the segmented block copolymer changes from a weak structure to a stiff one upon raising temperature. The storage modulus of the weak structure at low temperatures is inert to large‐amplitude oscillatory shear, while the oscillatory shear destroys the stiff structure at high temperatures and reduces its storage modulus to a value that is same as that of the weak structure. The tapping‐mode data of atomic force microscopy reveal that at low temperatures the polymer melt exhibits a biphasic structure consisted of small spherical soft domains dispersed in a slightly harder matrix; and at high temperatures the spherical domain structure preserves, though the domain coarsens and the hardness difference between the domain and the matrix enlarges. Infrared spectrum analysis shows that the temperature‐induced structural change is related to the dissociation of hydrogen bonding between the hard and soft segments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2557–2567, 2005  相似文献   

17.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
In spatially extended classical Belousov-Zhabotinsky (BZ) reaction, trigger spiral or concentric waves usually occur. If the BZ reaction is dispersed into nanodroplets of water-in-oil emulsion, new patterns are observed such as standing waves, anti-spirals, oscillons, dash-waves, jumping waves, Turing patterns, and other. If the size of water droplets is increased up to tens of micrometers, coupled micro-oscillators produce new stationary and oscillatory discrete dissipative patterns. In the review, comparative analysis of these patterns is done and a possibility of creating a chemical computer on the basis of dissipative patterns is discussed.  相似文献   

19.
In the present work, we spatially extended a brand new kinetic mechanism of the NO + NH3 reaction on Pt{100} to simulate the experimentally observed spatiotemporal traveling waves. The kinetic mechanism developed by Irurzun, Mola, and Imbihl (IMI model) improves the former model developed by Lombardo, Fink, and Imbihl (LFI model) by replacing several elementary steps to take into account experimental evidence published since the LFI model appeared. The IMI model achieves a better agreement with the experimentally observed dependence of the oscillation period on temperature. In the present work, the IMI model is extended by considering Fickean diffusion and coupling via the gas phase. Traveling waves propagating across the surface are obtained at realistic values of temperature and partial pressure. A transition from amplitude to phase waves is observed, induced either by temperature or by the gas global coupling strength. The traveling waves simulated in the present work are not associated with fixed defects, in agreement with experimental evidence of spiral centers capable of moving on the surface. Also, the IMI model adequately predicts the presence of macroscopic oscillations in the partial pressures of the reactants coexisting with front wave patterns on the surface.  相似文献   

20.
Amphiphiles alter the energy of surfaces, but the extent of this feature is typically constant. Smart systems with amphiphilicity as a function of an external, physical trigger are desirable. As a trigger, the exposure to a magnetic field, in particular, is attractive because it is not shielded in water. Amphiphiles like surfactants are well known, but the magnetic response of molecules is typically weak. Vice‐versa, magnetic particles with strong response to magnetic triggers are fully established in nanoscience, but they are not amphiphilic. In this work colloids with Janus architecture and ultra‐small dimensions (25 nm) have been prepared by spatial control over the thiol‐yne click modification of organosilica‐magnetite core–shell nanoparticles. The amphiphilic properties of these anisotropically modified particles are proven. Finally, a pronounced and reversible change in interfacial stabilization results from the application of a weak (<1 T) magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号