首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用一种廉价的电解方法制备了纳米银膜,并详细研究了在这种银膜上的表面增强拉曼散射效果.结晶紫为本实验的检测性分子.通过实验发现,这种银膜用便携式拉曼光谱仪测试并计算出的表面增强拉曼散射的增强因子为603,并对结晶紫的最小检出限为0.1nmol/L.  相似文献   

2.
报道了一种以自组装单层聚苯乙烯纳米微球阵列为模板, 通过真空热蒸镀银纳米粒子高效制备大面积银碗阵列结构的方法. 测试结果表明, 制得的银碗阵列结构为微纳米复合分级结构, 银碗由平均粒径为10 nm的银纳米粒子组成. 紫外-可见吸收光谱测试结果表明, 银碗阵列结构表面具有银纳米粒子的局域表面等离子体共振吸收峰. 将荧光分子N,N'-二正丁基喹吖啶酮(DBQA)分别蒸镀到普通银膜和银碗阵列结构表面并测试了荧光光谱. 结果表明, 在银碗阵列结构表面的荧光分子强度得到了显著增强, 说明制备的银碗阵列结构是优良的荧光增强基底.  相似文献   

3.
A self-assembled monolayer film(SAM) of ruthenium phthalocyanine (RuPe) fabricated on a silver sub-strate premodified with an SAM of terephthalonitrile (TPN) was studied by means of surface-enhanced Ra-man seattering(SERS) and ultraviolet-visible (UV-Vis) speetroseopies. TPN was used as a ligand to linkRuPe since it can not only modify the silver suhstrate but also deliver the nitrile groups protruding from thesilver surface. Therefore, we can explore the relationship between the structure and the orientation of RuPeand the TPN-modified substrate. The UV-Vis spectra indicate a strong interaction between RuPe and TPN inthe composite film. The result is further confirmed by the SERS spectra of RuPe-TPN SAM, in which the vi-brational bands arising from both the RuPe and TPN moieties appear clearly, indicating that the RuPe is suc-cessfully assembled on the TPN film.  相似文献   

4.
Shucheng Mo  Jianmin Na  Hua Mo  Xinhua Qu 《Talanta》1992,39(10):1255-1258
The voltammetric behavior of amaranth at a mercury thin film electrode on a silver substrate was studied in this paper. It was found that amaranth gave a sensitive reduction peak with the potential of -0.24 V at pH 4.0 in aqueous solution. The mercury thin film electrode on a silver substrate gave good reproducibility and useful life time. The peak currents depended linearly on the concentrations of amaranth from 0 to 100 ppb.  相似文献   

5.
In this work, a silver/silver chloride ink is fabricated using two steps. First the silver ink is prepare using silver, nail polish and acetone. Then the silver ink is painted in a paper substrate and a silver chloride layer is deposited using a bleach solution. The result is the silver/silver chloride conductive ink. The silver ink is cheap ($2.49/g), well-dispersive and very easy to fabricate. The materials were characterized by SEM and XRD. The Ag ink showed the formation of a continuous network throughout the silver ink film with fewer agglomeration. The effective chlorination process was also observed in the Ag/AgCl characterization. Since the Ag/AgCl substrate will be used as a quasi-reference electrode, it is important to investigate the electrical properties. The Ag ink showed an average ohmic resistance of 2.27 Ω. The addition of the AgCl layer decreases the conductivity, as expected. In summary, the Ag/Ag/Cl ink developed is simple, well-dispersed, cheap and with good conductivity. Therefore, it can be used as a conductive ink in the fabrication of quasi-reference electrodes.  相似文献   

6.
A special type of substrate for surface-enhanced Raman scattering (s.e.r.s.) is evaluated. The substrates consist of silver particles deposited on stochastically arranged SiO2 posts produced by plasma etching of a quartz surface using a silver island film as an etch mask. The optimization of various experimental parameters such as silver layer thickness, silver evaporation angle, and excitation energy are discussed in detail. Comparative studies with p-nitrobenzoic acid as the model compound indicate that this present substrate is at least one order of magnitude more effective than other common s.e.r.s. substrates, such as the silver island film and the crossed-grating surface, which were previously found to induce the strongest s.e.r.s. signals. The preparation of these silver-particle-post substrates avoids the elaborate lithographic procedures required for crossed-grating structures. The quantitation of species in a three-component mixture illustrates the selectivity of the s.e.r.s. technique.  相似文献   

7.
A new strategy was described for green preparation of silver nanoink with potentially high conductivity for printed electronics. Silver nanoparticles in the ink were characterized by visible ultraviolet spectrophotometer (UV‐vis), Transmission Electron Microscope (TEM), size distribution analysis (SDA), X‐Ray Diffractomer (XRD) and differential scanning calorimetry (DSC). Silver thin film was investigated by SEM and 4‐point probe. It can be found that silver nanoparticles are of small sizes about 2.1 ± 0.5 nm in diameter, with a low melting point of about 105°. It also can be concluded that continuous silver thin film has formed, and an integrated conductive track has been fabricated. Especially, when the solid content is up to 9 wt.% and the sintering condition is 200° for 30 minutes in air, the resistivity can decrease to 8.1 µΩ·cm, 4.9 times the bulk silver resistivity. In addition, the application of silver nanoink in conductive patterns on polyimide (PI) substrate was also studied by inkjet printing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
An application of the radiolysis method using an X-ray synchrotron beam is developed as a novel approach to the synthesis of metal-organic films with controlled shapes and thickness. We demonstrate that a Langmuir monolayer deposited onto a silver ion containing subphase, irradiated by an incident beam impinging below the critical angle for total reflection, induces the synthesis of a stable nanostructured silver-organic ultrathin film at the air-water interface. The X-ray scattering is also used to monitor in situ the structure of the silver layer during the synthesis process. The layer is observed by atomic force microscopy after its transfer onto a silicon substrate. One observes a film thickness of 4.6 nm, in good agreement with the X-ray penetration depth, about 4.5 nm. The silver structure is oriented by the initial organic film phase. This experiment demonstrates the considerable potential of this approach to produce various controlled metal-organic films with a surfactant self-assembly as a template.  相似文献   

9.
The growth of a molecular water film on the basic plane of a silver iodide monocrystal is studied through computer simulation. Decomposition into domains with spontaneous polarization is observed in the contact layer of the film at the interface with the substrate. The formation of domains is found to be sharply enhanced on a model substrate with the double polarizability of iodine ions; heteropolarization interactions caused by the formation of domain structures increase the film’s coupling with the substrate. It is demonstrated that the vapor pressure needed for molecular film growth is reduced appreciably via heteropolarization interactions.  相似文献   

10.
Ag nanoparticles, organized on indium tin oxide (ITO) surface, can act as a new surface enhanced Raman scattering (SERS) active substrate as well as a dry electrode. Compared with the traditional SERS-active substrate, its notable advantage is that the microcosmic changes of the film can be reflected by the SERS spectrum during the investigation of the film's electrical and other macroscopic characteristics. To illuminate the above-mentioned property of this new substrate, a series of n-hydroxybenzoic acids (n-HBA; n=p, m and o) was tested as probe molecules by SERS technique. These SERS spectra indicate that the significant changes of frequencies as well as intensities, respectively, arise from the changes of the adsorption behavior along with the proportional variation of molecules and silver nanoparticles. Excellent SERS signals prove that the silver nanoparticles-coated ITO is a highly SERS-active substrate and can efficiently reflect the microcosmic property of the film, which suggest it has promising potential of being a new technique for further application in the field of thin-film research.  相似文献   

11.
A new substrate of "gold nano-particle/silver nano-rod/ITO surface" was obtained by electrodeposition. Surface-enhanced Raman scattering (SERS) spectrum of high quality of C60 and stearic acid (SA) mixed Langmuir-Blodgett (LB) film shifted onto the new substrate was reported for the first time according to our knowledge. The results show that the substrate of "gold nano-particle/silver nano-rod/ITO surface" is very effective and active for C60 LB film. Furthermore, the C60 molecules are oriented on pentagons of C60 on the substrate. It is difficult to separate the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. On the one hand, the gold nano-particles grown on silver nano-rod surface perform an important action for magnifying the surface local electric field through the resonant excitation of surface plasma. And the needle-like rod may further magnify the local electric field because of lightning rod effect. On the other hand, charge transfer factor may not be neglected.  相似文献   

12.
The formation of nanometer‐sized gaps between silver nanoparticles is critically important for optimal enhancement in surface‐enhanced Raman scattering (SERS). A simple approach is developed to generate nanometer‐sized cavities in a silver nanoparticle thin film for use as a SERS substrate with extremely high enhancement. In this method, a submicroliter volume of concentrated silver colloidal suspension stabilized with cetyltrimethylammonium bromide (CTAB) is spotted on hydrophobic glass surfaces prepared by the exposure of the glass to dichloromethysilane vapors. The use of a hydrophobic surface helps the formation of a more uniform silver nanoparticle thin film, and CTAB acts as a molecular spacer to keep the silver nanoparticles at a distance. A series of CTAB concentrations is investigated to optimize the interparticle distance and aggregation status. The silver nanoparticle thin films prepared on regular and hydrophobic surfaces are compared. Rhodamine 6G is used as a probe to characterize the thin films as SERS substrates. SERS enhancement without the contribution of the resonance of the thin film prepared on the hydrophobic surface is calculated as 2×107 for rhodamine 6G, which is about one order of magnitude greater than that of the silver nanoparticle aggregates prepared with CTAB on regular glass surfaces and two orders of magnitude greater than that of the silver nanoparticle aggregates prepared without CTAB on regular glass surfaces. A hydrophobic surface and the presence of CTAB have an increased effect on the charge‐transfer component of the SERS enhancement mechanism. The limit of detection for rhodamine 6G is estimated as 1.0×10?8 M . Scanning electron microscopy and atomic force microscopy are used for the characterization of the prepared substrate.  相似文献   

13.
A general method for the generation of two-dimensional (2D) ordered silver nanoparticles (av 45 nm) ring array has been demonstrated via controllable self-assembly. The selective self-assembly is conducted on the edges of a gold coated polyelectrolyte film. This film is fabricated using the monolayer polystyrene (PS) spheres (av 600 nm) on a substrate as template, followed by depositing a positively charged polyelectrolyte and gold colloids (av 17 nm) via the layer-by-layer (LbL) self-assembly technique, and finally by eliminating the PS monolayer. This gold coated polyelectrolyte film has a regular pattern of sharp edges, and those edges are composed of abundant polyelectrolyte. This heterogeneous surface is easily prepared and universal for site-selective absorption of nanoparticles (silver nanoparticles in this paper, av 45 nm). This surface-guided self-assembly is powerful for fabricating micro/nanostructures on the edges of prepatterns. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the products.  相似文献   

14.
Li Wang 《Talanta》2010,82(1):113-2112
A method to fabricate AuAg bimetallic nanoparticles film by H2O2-mediated reduction of silver was reported. Gold nanoparticles (Au NPs) were first adsorbed onto the surface of a self-assembled 2-aminoethanethiol monolayer-modified gold film or 3-aminopropyltriethoxysilane (APTES) monolayer-modified quartz slide. Upon further treatment of this modified film with the solution containing silver nitrate (AgNO3) and H2O2, silver was deposited on the surface of Au NPs. The size of the AuAg bimetallic particles could be readily tuned by manipulating the concentration of H2O2. Surface plasmon resonance (SPR) was used to investigate the process, the deposition of silver on Au NPs modified gold film resulted in an obvious decrease of depth in the SPR reflectance intensity and minimum angle curves (SPR R-θ curves), which may be utilized for the quantitative SPR detection of the analyte, H2O2. Combination of the biocatalytic reaction that could yield H2O2 by using the enzyme, glucose oxidase, with the deposition of silver may enable the design of a glucose biosensor by SPR technique. Furthermore, we evaluated the AuAg bimetallic nanoparticles film for their ability to be an effective substrate for surface-enhanced Raman scattering (SERS).  相似文献   

15.
A viologen, N-hexyl-N'-(4-vinylbenzyl)-4,4'-bipyridinium dinitrate (HVVN), was synthesized and subsequently graft-copolymerized on poly(ethylene terephthalate) (PET) films. Silver nanoparticles can be deposited on the surface of the HVVN-PET film through photoinduced reduction of the silver ions in salt solution. The size and distribution of the silver nanoparticles can be varied by changing the reaction time. The pyridinium groups of the HVVN graft-copolymerized on the surface of the substrate possess bactericidal effects on Escherichia coli, and this antibacterial effect can be very significantly enhanced by the incorporation of silver nanoparticles on the HVVN-PET film. The dual functionalities of HVVN and silver remain stable after prolonged immersion in phosphate buffer solution and after aging in a weathering chamber.  相似文献   

16.
For a lab-on-chip application, we fabricate a blue bottom emitting strong microcavity organic light emitting diode (OLED), using very smooth and optically thin (25 nm) silver film as anode on a glass substrate. To improve the hole injection in the OLED device, PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)) has been used, so the silver anode must present not only a very smooth surface but also a strong adherence on the glass and a high wettability to allow a good PEDOT-PSS spin coating deposition. To obtain these physical properties, different 5 nm thick nucleation layers (germanium, chromium, and hydrogenated amorphous carbon) have been used to grow the silver thin films by e-beam deposition. The Ge/Ag bilayer presents all the desired properties: this bilayer, investigated by ellipsometry, optical profilometry, contact angle measurements, and XPS analysis, highlights an ultrasmooth surface correlated with the film growth mode and a high wettability related to its surface chemical composition.  相似文献   

17.
We present a facile synthetic route to a silver bowl-like array film with hierarchical structures on glass substrate using the colloidal monolayer as a template. In these special hierarchical structures, microstructures were provided by a colloidal template of polystyrene latex spheres and nanostructures resulting from the thermal decomposition of silver acetate. These structures were chemically modified with 1-hexadecanethiol, and a corresponding self-assembled monolayer (SAM) was formed on their surfaces. Due to the lotus leaf-like morphology with hierarchical micro/nanostructures, the film displayed an extraordinary superhydrophobicity after chemical modification. Water contact angle and sliding angle were 169 degrees and 3 degrees (the weight of water droplets: 3 mg), respectively. Additionally, its optical property has also been investigated. This structure could be used in microfluidic devices, optical devices, and biological science.  相似文献   

18.
Dai X  Wildgoose GG  Compton RG 《The Analyst》2006,131(11):1241-1247
In this report gold, silver and palladium metal nanoparticles are separately supported on glassy carbon microspheres (GCM) using bulk electroless deposition techniques to produce three different materials labelled as GCM-Au, GCM-Ag and GCM-Pd respectively. These three materials are then combined together into a composite film on a glassy carbon (GC) electrode surface using multiwalled carbon nanotubes (MWCNTs). The MWCNTs serve to not only mechanically support this composite film as a "binder" but they also help to "wire up" each modified GCM to the underlying substrate. The intelligently designed structure of this electrode interface allows this single modified electrode to simultaneously behave as if it were a macrodisc electrode constructed of gold, silver or palladium, whilst using only a fraction of the equivalent amount of these precious metals. Furthermore this unique structure allows the possibility of combinatorial electrochemistry to be realised using a relatively facile electrode construction which avoids the problems of alloy formation, co-deposition and the formation of bimetallic species. For instance a mixture of several different analytes, which can each only be detected on a different specific substrate, can simultaneously be determined using one electrode in a single voltammetric experiment! Alternatively a substrate could undergo electrocatalytic reactions on one substrate, whilst the products, and hence the progress of this reaction, can be studied at a different substrate simultaneously at the same electrode surface. Proof-of-concept examples are presented herein and the designer electrode interface is shown to produce analytical responses to model target analytes such as hydrazine, bromide and thallium(I) ions that are comparable, if not better, than those obtained at metal macrodisc electrodes and even at other state-of-the-art nanoparticle modified electrodes.  相似文献   

19.
In this paper, we developed a new kind of substrate, silver-coated indium tin oxide (ITO), to investigate the character of surface-enhanced Raman scattering (SERS) of p-hydroxybenzoic acid (PHBA). Homogeneous Ag-coated ITO substrate was obtained by decomposing AgNO(3) on the surface of ITO. A SERS spectrum of very good quality of "silver nanoparticles/PHBA/silver-coated ITO" was reported by adding PHBA aqueous solution and silver colloid onto the surface of silver-coated ITO repeatedly. PHBA molecules absorbed onto the surface of the silver nanoparticles through ionized carboxyl, and the PHBA molecules tended to tilt on the surface in this system. The rich information obtained from the silver nanoparticles/PHBA/silver-coated ITO system indicates that this is a highly SERS-active system. Not only was the number of the vibrational modes increased, but also were the frequencies of Raman bands shifted. The two SERS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experimental results. Furthermore, the silver nanoparticles modified on the silver-coated ITO surface play an important role in magnifying the surface local electric field near the silver film surface through resonant surface plasmon excitation.  相似文献   

20.
Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号