首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
A series of model theoretical calculations are described that suggest a new mechanism for the oxidation step in enzymatic cytochrome P450 hydroxylation of saturated hydrocarbons. A new class of metastable metal hydroperoxides is described that involves the rearrangement of the ground-state metal hydroperoxide to its inverted isomeric form with a hydroxyl radical hydrogen bonded to the metal oxide (MO-OH --> MO....HO). The activation energy for this somersault motion of the FeO-OH group is 20.3 kcal/mol for the P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] to produce the isomeric ferryl oxygen hydrogen bonded to an *OH radical [Por(SH)Fe(III)-O....HO(-)]. This isomeric metastable hydroperoxide, the proposed primary oxidant in the P450 hydroxylation reaction, is calculated to be 17.8 kcal/mol higher in energy than the ground-state iron(III) hydroperoxide Cpd 0. The first step of the proposed mechanism for isobutane oxidation is abstraction of a hydrogen atom from the C-H bond of isobutane by the hydrogen-bonded hydroxyl radical to produce a water molecule strongly hydrogen bonded to anionic Cpd II. The hydroxylation step involves a concerted but nonsynchronous transfer of a hydrogen atom from this newly formed, bound, water molecule to the ferryl oxygen with a concomitant rebound of the incipient *OH radical to the carbon radical of isobutane to produce the C-O bond of the final product, tert-butyl alcohol. The TS for the oxygen rebound step is 2 kcal/mol lower in energy than the hydrogen abstraction TS (DeltaE() = 19.5 kcal/mol). The overall proposed new mechanism is consistent with a lot of the ancillary experimental data for this enzymatic hydroxylation reaction.  相似文献   

2.
Many enzymes in nature utilize molecular oxygen on an iron center for the catalysis of substrate hydroxylation. In recent years, great progress has been made in understanding the function and properties of iron(IV)-oxo complexes; however, little is known about the reactivity of iron(II)-superoxo intermediates in substrate activation. It has been proposed recently that iron(II)-superoxo intermediates take part as hydrogen abstraction species in the catalytic cycles of nonheme iron enzymes. To gain insight into oxygen atom transfer reactions by the nonheme iron(II)-superoxo species, we performed a density functional theory study on the aliphatic and aromatic hydroxylation reactions using a biomimetic model complex. The calculations show that nonheme iron(II)-superoxo complexes can be considered as effective oxidants in hydrogen atom abstraction reactions, for which we find a low barrier of 14.7 kcal mol(-1) on the sextet spin state surface. On the other hand, electrophilic reactions, such as aromatic hydroxylation, encounter much higher (>20 kcal mol(-1)) barrier heights and therefore are unlikely to proceed. A thermodynamic analysis puts our barrier heights into a larger context of previous studies using nonheme iron(IV)-oxo oxidants and predicts the activity of enzymatic iron(II)-superoxo intermediates.  相似文献   

3.
Cationic platinum(II) complexes [((t)bpy)Pt(Ph)(L)](+) [(t)bpy =4,4'-di-tert-butyl-2,2'-bipyridyl; L = THF, NC(5)F(5), or NCMe] catalyze the hydrophenylation of ethylene to generate ethylbenzene and isomers of diethylbenzene. Using ethylene as the limiting reagent, an 89% yield of alkyl arene products is achieved after 4 h at 120 °C. Catalyst efficiency for ethylene hydrophenylation is diminished only slightly under aerobic conditions. Mechanistic studies support a reaction pathway that involves ethylene coordination to Pt(II), insertion of ethylene into the Pt-phenyl bond, and subsequent metal-mediated benzene C-H activation. Studies of stoichiometric benzene (C(6)H(6) or C(6)D(6)) C-H/C-D activation by [((t)bpy)Pt(Ph-d(n))(THF)](+) (n = 0 or 5) indicate a k(H)/k(D) = 1.4(1), while comparative rates of ethylene hydrophenylation using C(6)H(6) and C(6)D(6) reveal k(H)/k(D) = 1.8(4) for the overall catalytic reaction. DFT calculations suggest that the transition state for benzene C-H activation is the highest energy species along the catalytic cycle. In CD(2)Cl(2), [((t)bpy)Pt(Ph)(THF)][BAr'(4)] [Ar' = 3,5-bis(trifluoromethyl)phenyl] reacts with ethylene to generate [((t)bpy)Pt(CH(2)CH(2)Ph)(η(2)-C(2)H(4))][BAr'(4)] with k(obs) = 1.05(4) × 10(-3) s(-1) (23 °C, [C(2)H(4)] = 0.10(1) M). In the catalytic hydrophenylation of ethylene, substantial amounts of diethylbenzenes are produced, and experimental studies suggest that the selectivity for the monoalkylated arene is diminished due to a second aromatic C-H activation competing with ethylbenzene dissociation.  相似文献   

4.
A density functional theory (DFT) study was carried out to investigate possible reactions of dibenzofuran (DF) and dibenzo-p-dioxin (DD) in a reducing environment. Reaction energies, barrier heights, and molecular parameters for reactants, intermediates, products, and transition states have been generated for a wide range of possible reactions. It was found that C-O beta-scission in DF incurs a very large energy barrier (107 kcal/mol at 0 K), which is just 3 kcal/mol less than the direct H fission from C-H in DF to form dibenzofuranyl radicals. It was found that DF allows direct H addition to C1-C4 and C6-C9 as well as addition of two H atoms from a hydrogen molecule at sites 1 and 9 of DF. A bimolecular reaction of DF with H or H2 is found to have a significantly lower barrier than unimolecular decomposition through C-O beta-scission. An explanation for the predominance of polychlorinated dibenzofurans (PCDF) over polychlorinated dibenzo-p-dioxins (PCDD) in municipal waste pyrolysis is presented in the view of the facile conversion of DD into DF through ipso-addition at the four C sites of the two C-O-C central bonds in DD.  相似文献   

5.
The (13)C NMR CP-MAS spectrum of 2-naphthylphenylsulfoxide in the solid state displays line broadening effects due to the restricted rotation about the Ph-S bond. Line shape simulation of the temperature-dependent traces allowed the corresponding barrier to be determined in the solids (14.7 kcal mol(-1)). By making use of the information obtained from single-crystal X-ray diffraction, this barrier could be satisfactorily reproduced by theoretical calculations (14.5 kcal mol(-1)) that take into account the correlated phenyl motion involving a large set of molecules in the crystalline state  相似文献   

6.
Pincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir. Although a slightly higher energy barrier (DeltaE(+ +)) is computed for the D pathway, the calculated free-energy barrier (DeltaG(+ +)) for the D pathway is significantly lower than that of the A pathway. Under standard thermodynamic conditions (STP), C-H addition via the D pathway has DeltaG(o)(+ +) = 36.3 kcal/mol for CyH (35.1 kcal/mol for n-PrH). However, acceptorless dehydrogenation of alkanes is thermodynamically impossible at STP. At conditions under which acceptorless dehydrogenation is thermodynamically possible (for example, T = 150 degrees C and P(H)2 = 1.0 x 10(-7) atm), DeltaG(+ +) for C-H addition to ((Me)PCP)Ir (plus a molecule of free H(2)) is very low (17.5 kcal/mol for CyH, 16.7 kcal/mol for n-PrH). Under these conditions, the rate-determining step for the D pathway is the loss of H(2) from ((Me)PCP)IrH(2) with DeltaG(D)(+ +) approximately DeltaH(D)(+ +) = 27.2 kcal/mol. For CyH, the calculated DeltaG(o)(+ +) for C-H addition to ((Me)PCP)IrH(2) on the A pathway is 35.2 kcal/mol (32.7 kcal/mol for n-PrH). At catalytic conditions, the calculated free energies of C-H addition are 31.3 and 33.7 kcal/mol for CyH and n-PrH addition, respectively. Elimination of H(2) from the resulting "seven-coordinate" Ir-species must proceed with an activation enthalpy at least as large as the enthalpy change of the elimination step itself (DeltaH approximately 11-13 kcal/mol), and with a small entropy of activation. The free energy of activation for H(2) elimination (DeltaG(A)(+ +)) is hence found to be greater than ca. 36 kcal/mol for both CyH and n-PrH under catalytic conditions. The overall free-energy barrier of the A pathway is calculated to be higher than that of the D pathway by ca. 9 kcal/mol. Reversible C-H(D) addition to ((R)PCP)IrH(2) is predicted to lead to H/D exchange, because the barriers for hydride scrambling are extremely low in the "seven-coordinate" polyhydrides. In agreement with calculation, H/D exchange is observed experimentally for several deuteriohydrocarbons with the following order of rates: C(6)D(6) > mesitylene-d(12) > n-decane-d(22) > cyclohexane-d(12). Because H/D exchange in cyclohexane-d(12) solution is not observed even after 1 week at 180 degrees C, we estimate that the experimental barrier to cyclohexane C-D addition is greater than 36.4 kcal/mol. This value is considerably greater than the experimental barrier for the full catalytic dehydrogenation cycle for cycloalkanes (ca. 31 kcal/mol). Thus, the experimental evidence, in agreement with calculation, strongly indicates that the A pathway is not kinetically viable as a segment of the "acceptorless" dehydrogenation cycle.  相似文献   

7.
Mechanisms of dopamine hydroxylation by the Cu(II)-superoxo species and the Cu(III)-oxo species of dopamine beta-monooxygenase (DBM) are discussed using QM/MM calculations for a whole-enzyme model of 4700 atoms. A calculated activation barrier for the hydrogen-atom abstraction by the Cu(II)-superoxo species is 23.1 kcal/mol, while that of the Cu(III)-oxo, which can be viewed as Cu(II)-O*, is 5.4 kcal/mol. Energies of the optimized radical intermediate in the superoxo- and oxo-mediated pathways are 18.4 and -14.2 kcal/mol, relative to the corresponding reactant complexes, respectively. These results demonstrate that the Cu(III)-oxo species can better mediate dopamine hydroxylation in the protein environment of DBM. The side chains of three amino acid residues (His415, His417, and Met490) coordinate to the Cu(B) atom, one of the copper sites in the catalytic core that plays a role for the catalytic function. The hydrogen-bonding network between dopamine and the three amino acid residues (Glu268, Glu369, and Tyr494) plays an essential role in substrate binding and the stereospecific hydroxylation of dopamine to norepinephrine. The dopamine hydroxylation by the Cu(III)-oxo species is a downhill and lower-barrier process toward the product direction with the aid of the protein environment of DBM. This enzyme is likely to use the high reactivity of the Cu(III)-oxo species to activate the benzylic C-H bond of dopamine; the enzymatic reaction can be explained by the so-called oxygen rebound mechanism.  相似文献   

8.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

9.
We report on the design of more efficient C-H activation catalysts based on DFT calculations. The first examples of well-defined, N,O-donor ligated platinum complexes that are competent for fast C-H activation are detailed. These complexes exhibit thermal and protic stability and are efficient catalysts for H/D exchange reactions with benzene. The C-H activation is shown to benefit from design elements that (A) reduce the barrier for substrate coordination and (B) retain a low barrier for CH cleavage via a novel six-membered transition state involving the carboxylate group of the solvent.  相似文献   

10.
Dinuclear mu-oxo osmium porphyrins containing terminal Os=CPh2 bonds with a linear C=Os-O-Os=C moiety were prepared, which are reactive toward pyridine to form [Os(Por)(CPh2)(py)] and are active catalysts for inter- and intra-molecular cyclopropanation of alkenes and for carbene insertion into saturated C-H bonds.  相似文献   

11.
The epoxidation of ethene by a model for Compound I of cytochrome P450, studied by the use of density functional B3LYP calculations, involves two-state reactivity (TSR) with multiple electromer species, hence "multi-state epoxidation". The reaction is found to proceed in stepwise and effectively concerted manners. Several reactive states are involved; the reactant is an (oxo)iron(IV) porphyrin cation radical complex with two closely lying spin states (quartet and doublet), both of which react with ethene to form intermediate complexes with a covalent C-O bond and a carbon-centered radical (radical intermediates). The radical intermediates exist in two electromers that differ in the oxidation state of iron; Por(+)(*)Fe(III)OCH(2)CH(2)(*) and PorFe(IV)OCH(2)CH(2)(*) (Por = porphyrin). These radical intermediates exist in both the doublet- and quartet spin states. The quartet spin intermediates have substantial barriers for transformation to the quartet spin PorFe(III)-epoxide complex (2.3 kcal mol(-)(1) for PorFe(IV)OCH(2)CH(2)(*) and 7.2 kcal mol(-)(1) for Por(+)(*)Fe(III)OCH(2)CH(2)(*)). In contrast, the doublet spin radicals collapse to the corresponding PorFe(III)-epoxide complex with virtually no barriers. Consequently, the lifetimes of the radical intermediates are much longer on the quartet- than on the doublet spin surface. The loss of isomeric identity in the epoxide and rearrangements to other products arise therefore mostly, if not only, from the quartet process, while the doublet state epoxidation is effectively concerted (Scheme 7). Experimental trends are discussed in the light of the computed mechanistic scheme, and a comparison is made with closely related mechanistic schemes deduced from experiment.  相似文献   

12.
One-pot synthesis of R-1-phenylethyl acetate was investigated starting from acetophenone hydrogenation performed over Pd/Al2O3 and PdZn/Al2O3 catalysts followed by acylation of the intermediate secondary alcohol, R-1-phenylethanol, over an immobilized lipase. Furthermore, the performance of a third type of catalyst, Ru supported on hydroxyapatite (HAP) was evaluated for racemization of S-1-phenylethanol in one pot together with the two other catalysts. The main objectives of this work were to separate the effects of different catalysts and to reveal the reaction mechanism. For this purpose not only acetophenone, but also (R,S)-1-phenylethanol, S-1-phenylethanol, R-1-phenylethyl acetate, and styrene were used as reactants in combination with Pd/Al2O3, lipase and Ru/HAP as catalysts. The results revealed that the main side product, ethylbenzene, was formed in two different ways, via dehydration of (R,S)-1-phenylethanol to styrene, followed by its rapid hydrogenation to ethylbenzene, and via debenzylation of the desired product, R-1-phenylethyl acetate to ethylbenzene. The true one-pot synthesis, however, was demonstrated over Shvo’s catalyst, but Ru/HAP was not sufficiently active in the racemization step. Ru/Al2O3 was a promising catalyst for racemization of S-1-phenylethanol and for dynamic kinetic resolution of (R,S)-1-phenylethanol, when using only small amounts of the acyl donor ethyl acetate. The challenge in racemization is that the activity of heterogeneous Ru catalysts was inhibited by esters.  相似文献   

13.
The communication presents DFT calculations of 10 different C-H hydroxylation barriers by the active species of the enzyme cytochrome P450. The work demonstrates the existence of an excellent barrier-bond energy correlation. The so-obtained equation of the straight line is demonstrated to be useful for predicting barriers of related C-H activation processes, as well as for assessing barrier heights within the protein environment. This facility is demonstrated be estimating the barrier of camphor hydroxylation by P450cam.  相似文献   

14.
The activation mechanisms of a methane molecule on a Pt atom (CH4-Pt) and on a Pt tetramer (CH4-Pt4) were investigated using density functional theory (B3LYP and PW91) calculations. The results from these two functionals are different mostly in predicting the reaction barrier, in particular for the CH4-Pt system. A new lower energy pathway was identified for the CH4 dehydrogenation on a Pt atom. In the new pathway, the PtCH2 + H2 products were formed via a transition state, in which the Pt atom forms a complex with carbene and both dissociated hydrogen atoms. We report here the first theoretical study of methane activation on a Pt4 cluster. Among the five single steps toward dehydrogenation, our results show that the rate-limiting step is the third step, that is, breaking the second C-H bond, which requires overcoming an energy barrier of 28 kcal/mol. On the other hand, the cleavage of the first C-H bond, that is, the first reaction step, requires overcoming an energy barrier of 4 kcal/mol.  相似文献   

15.
Electronic properties of aryl radicals obtained by removing single hydrogen atoms from the sterically congested regions of benzo[c]phenanthrene, biphenyl, triphenylene, phenanthrene, and perylene are studied at the UBLYP/6-311G level of theory. Two structures are considered by each radical, the classical one involving a C-H.C arrangement of atoms and the nonclassical one possessing a three-center C-H-C linkage. The five nonclassical radicals under study are found to be transition states for degenerate 1,4- and 1,5-hydrogen shift reactions that interconvert the classical species. However, the results of the present calculations indicate that the nonclassical structures with the C-H distances in the C-H-C linkages shorter than 1.34 ? should be energy minima representing potentially observable chemical systems. The predicted energy barrier to the 1,5-hydrogen shift in the 1-benzo[c]phenanthrenyl radical is only 9.3 kcal/mol (6.1 kcal/mol with the zero-point energies included), making the hydrogen migration in this system facile at relatively low temperatures. Rigorous analysis of the computed electronic wave functions provides a clear-cut picture of bonding in both the classical and nonclassical aryl radicals.  相似文献   

16.
Nonheme oxoiron(IV) complexes of two pentadentate ligands, N4Py (N,N-bis(2-pyridylmethyl)-bis(2-pyridyl)methylamine) and Bn-tpen (N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane), have been generated and found to have spectroscopic properties similar to the closely related tetradentate TPA (tris(2-pyridylmethyl)amine) complex reported earlier. However, unlike the TPA complex, the pentadentate complexes have a considerable lifetime at room temperature. This greater thermal stability has allowed the hydroxylation of alkanes with C-H bonds as strong as 99.3 kcal/mol to be observed at room temperature. Furthermore, a large deuterium KIE value is found in the oxidation of ethylbenzene. These observations lend strong credence to postulated mechanisms of mononuclear nonheme iron enzymes that invoke the intermediacy of oxoiron(IV) species.  相似文献   

17.
An [Fe(IV)(2)(μ-O)(2)] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C-H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe(2)(μ-O)(2)] cores. We report here that water or alcohol substrates can activate synthetic [Fe(III)Fe(IV)(μ-O)(2)] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C-H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [Fe(III)Fe(IV)(μ-O)(2)] core, resulting in the formation of a more reactive species with a [X-Fe(III)-O-Fe(IV)═O] ring-opened structure (1-X, 2-X, X = OH(-) or OR(-)). Treatment of 2 with methoxide at -80 °C forms the 2-methoxide adduct in high yield, which is characterized by an S = 1/2 EPR signal indicative of an antiferromagnetically coupled [S = 5/2 Fe(III)/S = 2 Fe(IV)] pair. Even at this low temperature, the complex undergoes facile intramolecular C-H bond cleavage to generate formaldehyde, showing that the terminal high-spin Fe(IV)═O unit is capable of oxidizing a C-H bond as strong as 96 kcal mol(-1). This intramolecular oxidation of the methoxide ligand can in fact be competitive with intermolecular oxidation of triphenylmethane, which has a much weaker C-H bond (D(C-H) 81 kcal mol(-1)). The activation of the [Fe(III)Fe(IV)(μ-O)(2)] core is dramatically illustrated by the oxidation of 9,10-dihydroanthracene by 2-methoxide, which has a second-order rate constant that is 3.6 × 10(7)-fold larger than that for the parent diamond core complex 2. These observations provide strong support for the DFT-based notion that an S = 2 Fe(IV)═O unit is much more reactive at H-atom abstraction than its S = 1 counterpart and suggest that core isomerization could be a viable strategy for the [Fe(IV)(2)(μ-O)(2)] diamond core of sMMO-Q to selectively attack the strong C-H bond of methane in the presence of weaker C-H bonds of amino acid residues that define the diiron active site pocket.  相似文献   

18.
We report the first detailed density functional theory study on the mechanisms of initial propane activation on molybdenum oxides. We consider 6 possible mechanisms of the C-H bond activation on metal oxides, leading to 17 transition states. We predict that hydrogen abstraction by terminal Mo=O is the most feasible reaction pathway. The calculated activation enthalpy and entropy are 32.3 kcal/mol and -28.6 cal/(mol/K), respectively, in reasonably good agreement with the corresponding experimental values (28.0 kcal/mol and -29.1 cal/(mol/K)). We find that activating the methylene C-H bond is 4.7 kcal/mol more favorable than activating the methyl C-H bond. This regioselectivity is correlated with the difference in strength between a methylene C-H bond and a methyl C-H bond. Our calculations suggest that a combined effect from both the methylene and the methyl C-H bond cleavages leads to the experimentally observed overall kinetic isotopic effects from propane to propylene on the MoO(x)/ZrO(2) catalysts.  相似文献   

19.
The aryl-PC type ligand 3, benzyl(di-tert-butyl)phosphane, reacts with [Rh(coe)(2)(solv)(n)()]BF(4) (coe = cyclooctene, solv = solvent), producing the C-H activated complexes 4a-c (solv = (a). acetone, (b). THF, (c). methanol). Complexes 4a-c undergo reversible arene C-H activation (observed by NMR spin saturation transfer experiments, SST) and H/D exchange into the hydride and aryl ortho-H with ROD (R = D, Me). They also promote catalytic H/D exchange into the vinylic C-H bond of olefins, with deuterated methanol or water utilized as D-donors. Unexpectedly, complex 2, based on the benzyl-PC type ligand 1 (analogous to 3), di-tert-butyl(2,4,6-trimethylbenzyl)phosphane, shows a very different reversible C-H activation pattern as observed by SST. It is not active in H/D exchange with ROD and in catalytic H/D exchange with olefins. To clarify our observations regarding C-H activation/reductive elimination in both PC-Rh systems, density functional theory (DFT) calculations were performed. Both nucleophilic (oxidative addition) and electrophilic (H/D exchange) C-H activation proceed through eta(2)-C,H agostic intermediates. In the aryl-PC system the agostic interaction causes C-H bond acidity sufficient for the H/D exchange with water or methanol, which is not the case in the benzyl PC-Rh system. In the latter system the C-H coordination pattern of the methyl controls the reversible C-H oxidative addition leading to energetically different C-H activation processes, in accordance with the experimental observations.  相似文献   

20.
The reaction of the bifunctional organic molecule 1-(dimethylamino)-2-propyne (DMAP) on the Si(100) surface has been investigated by density functional calculations employing a two-dimer cluster model. We found that, once in the physisorbed dative bonded well (-20.0 kcal mol(-1)), DMAP can proceed via a number of pathways, involving the formation of Si-C sigma bonds, which lead to thermodynamically more stable configurations. We first considered the cycloaddition of the CC triple bond, leading to a Si-C di-sigma bonded product (-58.7 kcal mol(-1)), for which we computed an energy barrier of only 12.5 kcal mol(-1), consistently with the observed switching of DMAP adsorption linkage at 300 K. We also explored the dissociative pathway involving the methylene C-H bond cleavage on the dative bonded DMAP, leading to three adsorption products with one (-57.3 kcal mol(-1)) and three Si-C sigma bonds (-58.7 and -60.6 kcal mol(-1)). The energy barrier for this pathway is computed 24.7 kcal mol(-1) and may therefore compete at temperature above 300 K with the reaction pathway involving the addition of the alkyne unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号