首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The 2D CuII metal‐organic framework [Cu2(bptc)(H2O)4]n · 4nH2O ( 1 ) (H4bptc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid) was hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and magnetic measurements. In the structure, bptc4– serves as a twisted Π‐shaped organic building block to connect paddlewheel [Cu2(COO)4] dinuclear units and mononuclear units through 2‐/2′‐carboxylate and 4‐/4′‐carboxylate, respectively. According to the magnetic analysis using a dimer‐plus‐monomer model, strong antiferromagnetic coupling is operative within the dinuclear unit (J = –311 cm–1 based on H = –J S 1 S 2), and the compound behaves like a mononuclear molecule at low temperature.  相似文献   

2.
Herein, a novel anionic framework with primitive centered cubic (pcu) topology, [(CH3)2NH2]4[(Zn4dttz6)Zn3]?15 DMF?4.5 H2O, ( IFMC‐2 ; H3dttz=4,5‐di(1H‐tetrazol‐5‐yl)‐2H‐1,2,3‐triazole) was solvothermally isolated. A new example of a tetranuclear zinc cluster {Zn4dttz6} served as a secondary building unit in IFMC‐2 . Furthermore, the metal cluster was connected by ZnII ions to give rise to a 3D open microporous structure. The lanthanide(III)‐loaded metal–organic framework (MOF) materials Ln3+@IFMC‐2 , were successfully prepared by using ion‐exchange experiments owing to the anionic framework of IFMC‐2 . Moreover, the emission spectra of the as‐prepared Ln3+@IFMC‐2 were investigated, and the results suggested that IFMC‐2 could be utilized as a potential luminescent probe toward different Ln3+ ions. Additionally, the absorption ability of IFMC‐2 toward ionic dyes was also performed. Cationic dyes can be absorbed, but not neutral and anionic dyes, thus indicating that IFMC‐2 exhibits selective absorption toward cationic dyes. Furthermore, the cationic dyes can be gradually released in the presence of NaCl.  相似文献   

3.
The microporous metal‐organic framework Cd2(ABTC)(H2O)(DMA)2 · H2O · 3DMA ( 1 ) (H4ABTC = 3, 3′,5, 5′‐azobenzenetetracarboxylic acid; DMA = N,N′‐dimethylacetamide) was prepared by solvothermal reaction and characterized. X‐ray structure analysis revealed that compound 1 is a three‐dimensional (3D) open framework with 2D channels. The topology is based on a PtS net, constructed of 4‐connected rectangular ABTC4– units with 4‐connected tetrahedral dinuclear Cd2(CO2)4(H2O)(DMA)2 secondary building units (SBUs). The solid‐state excitation‐emission spectra showed that the strongest emission peak is at 403 nm upon excitation at λ = 287 nm.  相似文献   

4.
Antiperovskite Co3InC0.7N0.3 nanomaterials with highly enhanced oxygen reduction reaction (ORR) performance were prepared by tuning nitrogen contents through a metal–organic framework (MOF)‐derived strategy. The nanomaterial surpasses all reported noble‐metal‐free antiperovskites and even most perovskites in terms of onset potential (0.957 V at J=0.1 mA cm?2) and half‐wave potential (0.854 V). The OER and zinc–air battery performance demonstrate its multifunctional oxygen catalytic activities. DFT calculation was performed and for the first time, a 4 e? dissociative ORR pathway on (200) facets of antiperovskite was revealed. Free energy studies showed that nitrogen substitution could strengthen the OH desorption as well as hydrogenation that accounts for the enhanced ORR performance. This work expands the scope for material design via tailoring the nitrogen contents for optimal reaction free energy and hence performance of the antiperovskite system.  相似文献   

5.
A family of magnetic metal–organic frameworks, (Ph3PMe)2[M2(TCNQ)3] {M=Fe2+, Co2+, Ni2+ and Zn2+} have been prepared and structurally characterized. The honeycomb‐like “layers” consist of MII ions doubly bridged with dinitrilomethane moieties of two 7,7,8,8‐tetracyanoquinodimethane (TCNQ) dianions which are further connected through phenyl rings to form a 3D dianionic framework [M2TCNQ3]2? with Ph3PMe+ cations filling cavities that run along the c axis. Studies of the magnetic coupling through the TCNQ dianion in these structures revealed that it can promote long‐range magnetic ordering despite the long coupling pathway.  相似文献   

6.
The title complex, [Cd2(C2H2N3)(OH)(SO4)]n, is a three‐dimensional metal–organic framework consisting of pseudo‐cubane‐like tetranuclear cadmium clusters, which are formed by four CdII atoms, two sulfate groups and two hydroxide groups. The tetranuclear cadmium clusters are connected into a layered substructure by Cd—O bonds and adjacent layers are linked by triazolate ligands into a three‐dimensional network. A photoluminescent study revealed that the complex exhibits a strong emission in the visible region which probably originates from a π–π* transition.  相似文献   

7.
Two new heterometallic metal–organic frameworks (MOFs), LnZnTPO 1 and 2 , and two homometallic MOFs, LnTPO 3 and 4 (Ln=Eu for 1 and 3 , and Tb for 2 and 4 ; H3TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. They were prepared by solvothermal reaction of the C3-symmetric ligand H3TPO with the corresponding metal ion(s) (a mixture of Ln3+ and Zn2+ for 1 and 2 , and Ln3+ alone for 3 and 4 ). Single-crystal XRD (SXRD) analysis revealed that 1 and 3 are isostructural to 2 and 4 , respectively. TGA showed that the framework is thermally stable up to about 400 °C for 1 and 2 , and about 450 °C for 3 and 4 . PXRD analysis showed their pore-structure distortions without noticeable framework–structure changes during drying processes. The shapes of gas sorption isotherms for 1 and 3 are almost identical to those for 2 and 4 , respectively. Solvothermal immersion of 1 and 2 in Tb3+ and Eu3+ solutions resulted in the framework metal-ion exchange affording 4 and 3 , respectively, as confirmed by photoluminescence (PL), PXRD, IR, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy-dispersive X-ray (EDX) analyses.  相似文献   

8.
A new family of heterometal–organic frameworks has been prepared by two synthesis strategies, in which IFMC‐26 and IFMC‐27 are constructed by self‐assembly and IFMC‐28 is obtained by stepwise synthesis based on the metalloligand (IFMC=Institute of Functional Material Chemistry). IFMC‐26 is a (3,6)‐connected net and IFMC‐27 is a (4,8)‐connected 3D framework. The metalloligands {Ni(H4L)}(NO3)2 are connected by binuclear lanthanide clusters giving rise to a 2D sheet structure in IFMC‐28 . Notably, IFMC‐26‐Eu x Tb y and IFMC‐28‐Eu x Tb y have been obtained by changing the molar ratios of raw materials. Owing to the porosity of IFMC‐26 , Tb3+@IFMC‐26‐Eu and Eu3+@IFMC‐26‐Tb are obtained by postencapsulating TbIII and EuIII ions into the pores, respectively. Tunable luminescence in metal–organic frameworks is achieved by the two kinds of doping methods. In particular, the quantum yields of heterometal–organic frameworks are apparently enhanced by postencapsulation of LnIII ions.  相似文献   

9.
A new potassium dysprosium polyborate, K3DyB6O12, has been prepared via the high‐temperature molten salt method and structurally characterized by single‐crystal X‐ray diffraction analysis. The structure can be described as a three‐dimensional framework composed of isolated bicyclic [B5O10]5? groups and Dy3+ and K+ ions. The Fourier transform IR (FT–IR) and ultraviolet–visible (UV–Vis) spectra were investigated. A series of K3Gd1–xDyxB6O12 phosphors was prepared and their photoluminescence properties were studied. The K3Gd1–xDyxB6O12 phosphors exhibit a strong yellow emission band at 577 nm (the 4F9/26H13/2 transition of Dy3+) under UV excitation of 275 nm (the 8S7/26IJ transition of Gd3+), suggesting the occurrence of the energy transfer Gd3+→Dy3+. The optimized doping concentration of the Dy3+ ion was 8 mol%. We may expect that K3Gd1–xDyxB6O12 is a promising pale‐yellow emission phosphor for visual displays or solid‐state lighting.  相似文献   

10.
A stable metal–organic framework pillared by Keggin‐type polyoxometalate, Cu6(Trz)10(H2O)4[H2SiW12O40]?8 H2O (Trz=1,2,4‐triazole) ( 1 ), has been prepared under hydrothermal condition. The 2D layer structure with a 22‐member ring was formed by Cu2+ ions, which are connected with each other via the Trz ligands on the ab plane. Thus, the 2D layers are further interconnected through Keggin polyoxoanions to generate a 3D porous network with a small 1D channel. Moreover, the presence of polyoxoanions make it exhibit selective adsorption of water and proton‐conducting properties. Additionally it showed efficient intrinsic peroxidase‐like activity, providing a simple and sensitive colorimetric assay to detect H2O2.  相似文献   

11.
A luminescent cadmium–pamoate metal–organic framework, [Cd2(PAM)2(dpe)2(H2O)2]?0.5(dpe) ( 1 ), has been synthesized under hydrothermal conditions by using π‐electron‐rich ligands 4,4′‐methylenebis(3‐hydroxy‐2‐naphthalenecarboxylic acid) (H2PAM) and 1,2‐di(4‐pyridyl)ethylene (dpe). Its structure is composed of both mononuclear and dinuclear CdII building units, which are linked by the PAM and dpe ligands, resulting in a (4,8)‐connected 3D framework. The π‐conjugated dpe guests are located in a 1D channel of 1 . The strong emission of 1 could be quenched efficiently by trace amounts of 2,4,6‐trinitrophenol (TNP), even in the presence of other competing analogues such as 4‐nitrophenol, 2,6‐dinitrotoluene, 2,4‐dinitrotoluene, nitrobenzene, 1,3‐dinitrobenzene, hydroquinone, dimethylbenzene, and bromobenzene. The high sensitivity and selectivity of the fluorescence response of 1 to TNP shows that this framework could be used as an excellent sensor for identifying and quantifying TNP. In the same manner, 1 also exhibits superior selectivity and sensitivity towards Cu2+ compared with other metal ions such as Zn2+, Mn2+, Mg2+, K+, Na+, Ni2+, Co2+, and Ca2+. This is the first MOF that can serve as a dual functional fluorescent sensor for selectively detecting trace amounts of TNP and Cu2+.  相似文献   

12.
Miniaturizing the size of metal‐organic framework (MOF) crystals to the nanometer scale is challenging, but it provides more advanced applications without changing the characteristic features itself. It is especially useful to investigate the correlation between the porous properties and the interfacial structures of nanocrystals. Using amino acids as capping agents, nanoscale Tb‐MOF‐76 is fabricated rapidly by means of microwave‐assisted methods. Both the modular effects of the amimo acids and the acid–base environment of the reaction medium have an important impact on the morphologies and dimensions of Tb‐MOF‐76. The structures of the samples are confirmed by powder X‐ray diffraction, and the morphologies are characterized by SEM. Photoluminescence studies reveal that these Tb‐MOF‐76 materials exhibit a green emission corresponding to the transition 5D47FJ of Tb3+ ions under UV‐light excitation, which is sensitive to small organic molecules in solution.  相似文献   

13.
The synthesis, structure, and spectroscopic characterization of the first transplutonium metal–organic framework (MOF) is described. The preparation and structure of Am‐GWMOF‐6, [Am2(C6H8O4)3(H2O)2][(C10H8N2)], is analogous to that of the isostructural trivalent lanthanide‐only containing material GWMOF‐6. The presented MOF architecture is used as a platform to probe Am3+ coordination chemistry and guest‐enhanced luminescent emission, whereas the framework itself provides a means to monitor the effects of self‐irradiation upon crystallinity over time. Presented here is a discussion of these properties and the opportunities that MOFs provide in the structural and spectroscopic study of actinides.  相似文献   

14.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

15.
Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core–shell structure of the monodisperse molecule magnet of [Gd52Ni56(IDA)48(OH)154(H2O)38]@SiO2 ( 1 a @SiO2) was prepared by encapsulating one high‐nuclearity lanthanide–transition‐metal compound of [Gd52Ni56(IDA)48(OH)154(H2O)38]?(NO3)18?164 H2O ( 1 ) (IDA=iminodiacetate) into one silica nanosphere through a facile one‐pot microemulsion method. 1 a @SiO2 was characterized using transmission electron microscopy, N2 adsorption–desorption isotherms, and inductively coupled plasma‐atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1=0.25 cm?1, J2=?0.060 cm?1, J3=?0.22 cm?1, J4=?8.63 cm?1, g=1.95, and z J=?2.0×10?3 cm?1 for 1 , and J1=0.26 cm?1, J2=?0.065 cm?1, J3=?0.23 cm?1, J4=?8.40 cm?1 g=1.99, and z J=0.000 cm?1 for 1 a @SiO2. The z J=0 in 1 a @SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.  相似文献   

16.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

17.
The two‐dimensional (2D) metal–organic framework (MOF) [Cd(TPTZ)(H2O)2(HCOOH)(IPA)2]n ( 1 ; TPTZ={4‐[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]phenyl}‐1H‐1,2,4‐triazole, IPA=isophthalic acid) has been constructed with the π‐electron‐rich aromatic ligand TPTZ, auxiliary ligand IPA, and the metal Cd2+ ion with a d10 configuration under solvothermal conditions. Complex 1 exhibits a strong ligand‐originated photoluminescence emission, which is selectively sensitive toward electron‐deficient nitroaromatic compounds, such as nitrobenzene (NB), 1,3‐dinitrobenzene (m‐DNB), and 1,4‐dinitrobenzene (p‐DNB), and nitro‐aliphatic compounds, such as nitromethane (NM) and tris(hydroxymethyl)nitromethane. This property makes complex 1 a potential fluorescence sensor for these chemicals. Single‐crystal X‐ray diffraction studies revealed that dinuclear cadmium building units were further bridged by TPTZ ligands to give a four‐connected uninodal net with the Schläfli symbol of [4.63.4.63.62.64].  相似文献   

18.
A heterogeneous catalyst was synthesized by immobilizing Mo(CO)3 in a UiO‐66 metal–organic framework. The benzene ring of the organic linker in UiO‐66 was modified via liquid‐phase deposition of molybdenum hexacarbonyl, Mo(CO)6, as starting precursor to form the (arene)Mo(CO)3 species inside the framework. The structure of this catalyst was characterized using X‐ray diffraction, and chemical integrity was confirmed using Fourier transform infrared and diffuse reflectance UV–visible spectroscopic methods. The metal content was analysed with inductively coupled plasma. Field emission scanning electron microscopy was used to measure particle size and N2 adsorption measurements to characterize the specific surface area. This catalytic system was efficiently applied for epoxidation of alkenes and oxidation of sulfides. The Mo‐containing metal–organic framework was reused several times without any appreciable loss of its efficiency.  相似文献   

19.
The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO‐66‐NH2) was explored using dynamic nuclear polarization‐enhanced 15N{1H} CPMAS NMR spectroscopy supported by X‐ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl? from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square‐planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.  相似文献   

20.
Over the past two decades, the development of novel inorganic–organic hybrid porous crystalline materials or metal–organic frameworks (MOFs) using crystal engineering has provoked significant interest due to their potential applications as functional materials. In this context, luminescent MOFs as fluorescence sensors have recently received significant attention for the sensing of ionic species and small molecules. In this work, a new luminescent heterometallic zinc(II)–barium(II)‐based anionic metal–organic framework, namely poly[imidazolium [triaqua(μ6‐benzene‐1,3,5‐tricarboxylato)bariumtrizinc] tetrahydrate], {(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2O}n ( 1 ), was synthesized under hydrothermal conditions and characterized. Compound 1 presents a three‐dimensional framework with an unprecedented (3,5)‐connected topology of the point symbol (3.92).(33.42.5.93.10), and exhibits `turn‐off' luminescence responses for the Cu2+ and Fe3+ ions in aqueous solution based on significantly different quenching mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号