首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
In this study, a needle‐trap device with fibers coated with a molecularly imprinted polymer was developed for separation. A number of heat‐resistant Zylon filaments were longitudinally packed into a glass capillary, followed by coating with a molecularly imprinted polymer. Then, the molecularly imprinted polymer coating was copolymerized and anchored onto the surface of the fibers. The bundle of synthetic fibers coated with the molecularly imprinted polymer was packed into a 21G stainless‐steel needle and served as an extraction medium. The coated‐fiber needle extraction device was used to extract volatile organic compounds from paints and gasoline effectively. Subsequently, the extracted volatile organic compounds were analyzed by gas chromatography. Calibration curves of gaseous benzene, toluene, ethylbenzene, and o‐xylene in the concentration range of 1–250 μg/L were obtained to evaluate the method, acceptable linearity was attended with correlation coefficients above 0.998. The limit of detection of benzene, toluene, ethylbenzene, and o‐xylene was 11–20 ng/L using the coated‐fiber needle‐trap device. The relative standard deviation of needle‐to‐needle repeatability was less than 8% with an extraction time of 20 min. The loss rates after storage for 3 and 7 days at room temperature were less than 30%.  相似文献   

2.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

3.
A rapid determination of benzene, toluene, ethylbenzene and the three xylene isomers (BTEX), including a nearly baseline separation of the xylene isomers in environmental samples within 1 min has been carried out using low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). In order to evaluate the different parameters which may influence the performance of LP-GC-IT-MS, different column and mass spectral parameters were varied. Comparing LP-GC-IT-MS with the conventional equivalent, we obtained excellent detection limits as well as a good RSD of 8-13% in ition to a much shorter analysis time. In order to evaluate LP-GC-IT-MS for use in environmental samples, we determined BTEX in air.  相似文献   

4.
Pulsed glow discharge (PGD) coupled to time of flight mass spectrometry (TOFMS) has been investigated for volatile organic compound (VOC) identification and determination. Optimization of PGD operational conditions (chamber design, applied power, pressure and duty cycle) was performed using acetone and benzene as model compounds. During the different optimizations, molecular, fragment and elemental information were obtained when characteristic GD pulse regions were measured. An exploratory study for several VOCs (lineal hydrocarbons, oxygen‐containing compounds and aromatic compounds) revealed the capability of the PGD to provide crucial information to elucidate structures (fragments), molecular ions or even proton affinity nature of the molecules; this last information is a consequence of the enriched proton environment generated along the afterglow region for the ionization chamber used. Analytical characteristics were evaluated with solid phase microextraction–gas chromatography coupled to PGD‐TOFMS for special aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene: BTEX) in water, showing a good performance in terms of reproducibility and sensitivity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
A two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOFMS) method was developed for the hydrocarbon class composition analysis and benzene, toluene, ethylbenzene, and xylene (BTEX) estimation of raffinate column bottom (RCB), which is generated as a by-product from linear alkyl benzene (LAB) plants. The molecular level characterization of RCB is important to generate value-added products for the petrochemical industry. GC×GC–TOFMS was found to be an excellent tool for estimation of hydrocarbon class composition (paraffins, naphthenes, monoaromatics, diaromatics, and polyaromatic hydrocarbons) and trace level BTEX in a single run. The hydrocarbon class composition was validated with the standard method based on HPLC (ASTM D6591) and good correlation was obtained. Finally, RCB is anticipated to be a useful nonhazardous safe by-product which could be used further for generating added value.  相似文献   

6.
For the first time, electromembrane extraction combined with liquid chromatography and tandem mass spectrometry was applied for the determination of urinary benzene, toluene, ethylbenzene, and xylene metabolites. S‐Phenylmercapturic acid, hippuric acid, phenylglyoxylic acid, and methylhippuric acid isomers were extracted from human urine through a supported liquid membrane consisting of 1‐octanol into an alkaline acceptor solution filling the inside of a hollow fiber by application of an electric field. Various extraction factors were investigated and optimized using response surface methodology, the statistical method. The optimum conditions were established to be 300 V applied voltage, 15 min extraction time, 1500 rpm stirring speed, and 5 mM ammonium acetate (pH 10.2) acceptor solution. The method was validated with respect to selectivity, linearity, accuracy, precision, limit of detection, limit of quantification, recovery, and reproducibility. The results showed good linearity (r2 > 0.995), precision, and accuracy. The extract recoveries were 52.8–79.0%. Finally, we applied this method to real samples and successfully measured benzene, toluene, ethylbenzene, and xylene metabolites.  相似文献   

7.
It is difficult to identify unknown impurities in nucleotide analogues by mass spectrometry because mass‐spectrometry‐incompatible mobile phases need to be used to separate the major ingredient from impurities. In this study, vidarabine monophosphate was selected, and unknown impurities were identified by online heart‐cutting two‐dimensional high‐performance liquid chromatography and linear ion trap mass spectrometry. The one‐dimensional reversed‐phase column was filled with a mobile phase containing nonvolatile salt. In two‐dimensional high‐performance liquid chromatography, we used an Acclaim Q1 column with volatile salt, and the detection wavelength was 260 nm. The mass spectrum was scanned in positive‐ and negative‐ion mode. The online heart‐cutting and online demineralization technique ensured that the mobile phase was compatible with mass spectrometry; seven impurities were identified by MS2 and MS3 fragments. The mass fragmentation patterns of these impurities were investigated. The two isomers were semiprepared and complemented by nuclear magnetic resonance. The results were further compared with those of normal‐phase high‐performance liquid chromatography with mass spectrometry. The online heart‐cutting two‐dimensional high‐performance liquid chromatography with mass spectrometry was superior in identifying more impurities. The method solves the problem of incompatibility between the mobile phase and mass spectrometry, so it is suitable for identifying unknown impurities. This method may also be used for investigating impurities in other nucleotide analogues.  相似文献   

8.
In this study, an impurity profiling method was established for the source identification of spilled benzene series compounds. Toluene was used as a case study to demonstrate the feasibility of this approach. Gas chromatography with mass spectrometry was applied for identification and quantification of the impurities including ethyl benzene, p‐xylene, m‐xylene, and o‐xylene in toluene. Impurities in toluene were detected at very low levels by applying mass spectrometry in selected‐ion monitoring mode. Eight authentic toluene samples collected from different manufacturers were analyzed by the developed gas chromatography with mass spectrometry method to construct the characteristic impurity profiling of toluene. Then, combined with scatter distribution, similarity analysis and t‐test, a suite of diagnostic ratios based on the impurity distribution was used for the differentiation of toluene from different sources. Results indicated that scatter distribution method can discriminate the original toluene samples from different manufacturers. Similarity calculation and t‐test methods can identify effectively the weathered toluene samples. The proposed impurity profiling method was useful for discrimination between toluene samples from different sources. Statistical analysis of these impurity profiles demonstrated the potential to investigate whether two questioned spilled toluene samples encountered in forensic casework are from the same source.  相似文献   

9.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

10.
Benzene, toluene, ethylbenzene, the isomers of xylene, and trimethylbenzene are harmful volatile organic compounds and pose risks to human health and the environment. However, there are currently no effective chemosensors for vapors of these compounds. A porous supramolecular host for turn‐on fluorogenic and chromogenic detection of the vapors of small aromatic hydrocarbons is presented. The host was constructed from a naphthalenediimide derivative that was supramolecularly connected to tris(pentafluorophenyl)borane. The amorphous powder form of the host allowed for effective accommodation of vapors of small aromatic hydrocarbons, resulting in a guest‐dependent fluorescence emission. Increases in the fluorescence yield of 76‐, 46‐, and 37‐fold were observed with toluene, benzene, and m‐xylene, respectively. Negligible responses were obtained with common organic solvents. This simple supramolecular host could be applied as a useful sensor of small aromatic hydrocarbon vapors.  相似文献   

11.
We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle‐trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After obtaining acceptable preliminary results, some selected volatile compounds, including chloroform, benzene, toluene, ethylbenzene, xylene, and chlorobenzenes were used as model analytes to validate the enrichment properties of the prepared sorbent in conjunction with gas chromatography mass spectrometric detection. Important parameters influencing the extraction process such as extraction temperature, ionic strength, sampling flow rate, extraction time, desorption temperature, and time were optimized. The limits of detection and limits of quantification values were in the range of 0.5–3  and 2–5 ng/L, respectively, using time‐scheduled selected ion monitoring mode. The relative standard deviation percent with three replicates was in the range of 5–10%. The applicability of the developed needle‐trap method was examined by analyzing urine samples and the relative recovery percentages for the spiked samples were in the range of 81–105%.  相似文献   

12.
采用顶空–气相色谱/质谱法同时测定餐垫纸中16种挥发性有机化合物(无水乙醇、异丙醇、正丁醇、丙酮、丁酮、己醛乙酸乙酯、乙酸异丙酯、乙酸丁酯、丙二醇甲醚、乙酸正丙酯、苯、甲苯、间二甲苯、对二甲苯、邻二甲苯)的含量。采用恒流模式,流速设定为2.5 mL/min,程序升温,16种挥发性有机化合物可以很好地分离。各成分工作曲线的相关系数r2均大于0.999 5,加标回收率在86.6%~104.8%之间,测定结果的相对标准偏差均不大于6.9%(n=6);各成分的检出限均低于0.01 mg/m2。该法具有进样简单,分离效果好,精密度高等特点,能够满足餐垫纸中挥发性有机物检测要求。  相似文献   

13.
A fast and simple screening procedure using solid‐phase microextraction and gas chromatography‐mass spectrometry (SPME‐GC‐MS) in full‐scan mode for the determination of volatile organic compounds (VOC) is presented. The development of a fast and simple screening technique for the simultaneous determination of various volatiles is of great importance, because of their widespread use, frequent occurrence in forensic toxicological questions and the fact that there is often no hint on involved substances at the crime scene. To simulate a screening procedure, eight VOC with different chemical characteristics were chosen (isoflurane, halothane, hexane, chloroform, benzene, isooctane, toluene and xylene). To achieve maximum sensitivity, variables that influence the SPME process, such as type of fiber, extraction and desorption temperature and time, agitation and additives were optimized by preliminary studies and by means of a central composite design. The limits of detection and recoveries ranged from 2.9 µg/l (xylene) to 37.1 µg/l (isoflurane) and 7.9% (chloroform) to 61.5% (benzene), respectively. This procedure can be used to answer various forensic and toxicological questions. The short time taken for the whole analytical procedure may make its eventual adoption for routine analysis attractive. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The absolute photoionization cross‐sections of aromatics and aromatic derivatives including toluene, ethylbenzene, n‐propylbenzene, o‐xylene, m‐xylene, p‐xylene, 1,3,5‐trimethylbenzene, styrene, phenylacetylene, indene, indane, 1‐methylnaphthalene, benzyl alcohol and benzaldehyde were measured at the photon energy range from ionization thresholds to 11.7 eV. The experiments were performed by tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Benzene was chosen as a calibration standard, since its photoionization cross‐section is well known. Binary liquid mixtures of the investigated molecules and benzene were used in the measurements. Photo‐induced fragments from the molecules were also observed, and their photoionization cross‐sections are also presented. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple method of solventless extraction of volatile organic compounds (benzene, toluene, ethylbenzene and xylenes) from aqueous samples was developed. This method allows direct injection of large volume of water sample into a gas chromatograph using the sorption capacity of the sorbent Chromosorb P NAW applied directly in the injection port of gas chromatograph. The system prevent water penetration into a column, keep it adsorbed on its surface until the analytes are stripped into a column, and the residual water is purging using split flow. The limit of detection ranging from 0.6 for benzene to 1.1 microg l(-1) for o-xylene and limit of quantification ranging 2.0-3.6 microg l(-1) are lower that those reached by gas chromatography with flame ionization detection and direct aqueous injection before.  相似文献   

16.
A wide variety of biomass, from triglycerides to lignocellulosic‐based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom‐containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi‐dimensional gas chromatography, both heart‐cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi‐volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography–mass spectrometry‐based techniques, mainly focusing in the period 2011–early 2020. Particular emphasis has been devoted to the multi‐dimensional gas chromatography–mass spectrometry techniques, for the isolation and characterization of the oxygen‐containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.  相似文献   

17.
A stir bar sorptive extraction (SBSE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized on the surface of a rod, as a possible alternative to solid‐phase microextraction (SPME). Liquid desorption was subsequently employed to transfer the extracted analytes into the injection port of a gas chromatography‐mass spectrometry (GC‐MS). The PPy sorbent including polypyrrole‐dodecyl sulfate (PPy‐DS) was deposited on the surface of a stainless steel rod from the corresponding aqueous electrolyte by applying a constant deposition potential. The developed method was applied to the trace level extraction of BTEX (benzene, toluene, ethylbenzene, o,p‐xylene) from aqueous sample. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.01–0.1 ng·mL?1. The relative standard deviations (RSD) at a concentration level of 1 ng·mL?1 were obtained between 8% and 13% (n=6). The calibration curves of BTEX showed linearity in the range of 0.03 to 600 ng·mL?1. The proposed method was successfully applied to the extraction of some selected BTEX from river water samples and the relative recoveries were higher than 90% for all the analytes.  相似文献   

18.
Benzylsuccinic acid (BSA) and methylbenzylsuccinic acid (methyl-BSA) are unambiguous biotransformation products resulting from anaerobic toluene and xylene biodegradation, respectively. A solid-phase extraction method based on polystyrene-divinylbenzene sorbent was developed for the quantitative BSA determination in groundwater samples as an alternative to liquid-liquid extraction. Gas chromatography coupled with mass spectrometry was used for separation and detection. The recovery from spiked 11 groundwater samples was 88 to 100%. The precision of the method, indicated by the relative standard deviation, was +/- 4% and the method detection limit was 0.2 microg/l. The concentration of BSA and methyl-BSA in groundwater samples from anaerobic BTEX (benzene, toluene, ethylbenzene and xylenes)-contaminated sites ranged from below the detection limit (3 microg/l) to 155 microg/l.  相似文献   

19.
A novel heart‐cutting two‐dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for quantitative analysis of pendimethalin residue in tobacco. The strategy of reversed phase liquid chromatography coupled with another reversed‐phase liquid chromatography was employed for high column efficiency and excellent compatibility of mobile phase. In the first dimensional chromatography, a cyano column with methanol/water as the eluent was applied to separate pendimethalin from thousands of interference components in tobacco. By heart‐cutting technique, which effectively removed interference components, the target compound was cut to the second dimensional C18 column for further separation. The pendimethalin residue was finally determined by the tandem mass spectrometry under multiple reaction monitoring reversed‐phase liquid chromatography mode. Sample pretreatment of the new method was simplified, involving only extraction and filtration. Compared with traditional methodologies, the new method showed fairly high selectivity and sensitivity with almost no matrix interference. The limit of quantitation for pendimethalin was 1.21 ng/mL, whereas the overall recoveries ranged from 95.7 to 103.3%. The new method has been successfully applied to non‐stop measure of 200 real samples, without contamination of ion source. Detection results of the samples agreed well with standard method.  相似文献   

20.
A solid-phase microextraction (SPME) sampling method is developed to evaluate indoor exposure to benzene, toluene, ethylbenzene, xylene, and styrene with gas chromatography and flame ionization detection for quantitative analysis. An SPME holder with a 100-pm polydimethylsiloxane (PDMS) and 65-pm PDMS-divinylbenzene fiber coating is tested in different air relative humidity conditions. The method gives good resolution, shows a linear response, is repeatable, and presents high sensitivity. This method is compared with National Institute of Occupational Safety and Health (NIOSH) active sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号