首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established to separate and identify the chemical constituents of Zhi–Zi–Da–Huang decoction, a classic traditional Chinese medicine formula. The chromatographic separation was achieved on a Shim‐pack XR‐ODS C18 column (75  × 3.0 mm, 2.2 μm) using a gradient elution program. The detection was performed on a Waters Xevo G2 Q‐TOF mass spectrometer equipped with electrospray ionization source in both positive and negative modes. With the optimized conditions, a total of 82 compounds were identified or tentatively characterized. Of the 82 compounds, 21 compounds were identified by comparing the retention time and MS data with reference standards, the rest were characterized by analyzing MS data and retrieving the reference literature. In addition, 31 compounds were identified from Gardenia jasminoides Ellis, ten compounds were identified from Rheum palmatum L., 33 compounds were identified from Citrus aurantium L., and eight compounds were identified from Sojae Semen Praeparatum. Results indicated that iridoids, anthraquinones, flavonoids, isoflavonoids, coumarins, glycosides of crocetin, monoterpenoids, and organic acids were major constituents in Zhi–Zi–Da–Huang decoction. It is concluded that the developed ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method with high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents of Zhi–Zi–Da–Huang decoction, and the analysis provides a helpful chemical basis for further research on Zhi–Zi–Da–Huang decoction.  相似文献   

2.
In this study, the technique of high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (HPLC‐ESI‐Q‐TOFMS) was used to analyze and identify the absorptive constituents and their metabolites in drug‐containing urine of Wuzhishan (WZS)‐miniature pigs administered with Puerariae Lobatae Radix (PLR) decoction. With the accurate mass measurements (<5 ppm) and effective MS2 fragment ions, 96 compounds, including eight original constituents and 88 metabolites, were identified from the drug‐containing urine. Among these, 64 metabolites were new ones and their structures can be categorized into five types: isoflavones, puerols, O‐desmethylangolensins, equols and isoflavanones. In particular, puerol‐type constituents in PLR were first proved to be absorptive in vivo. Meanwhile, the metabolic pathways of PLR in vivo were investigated. On the basis of relative content of the identified compounds, 13 major metabolites accounting for approximately 50% of the contents, as well as their corresponding 12 prototype compounds, were determined as the major original absorptive constituents and metabolites of PLR in vivo. The HPLC‐ESI‐Q‐TOFMS technique proved to be powerful for characterizing the chemical constituents from the complicated traditional Chinese medicine matrices in this research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Da‐Huang‐Xiao‐Shi decoction, consisting of Rheum officinale Baill, Mirabilitum, Phellodendron amurense Rupr. and Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of jaundice. As described in “Jin Kui Yao Lue”, a traditional multistep decoction of Da‐Huang‐Xiao‐Shi decoction was required while simplified one‐step decoction was used in recent repsorts. To investigate the chemical difference between the decoctions obtained by the traditional and simplified preparations, a sensitive and reliable approach of high‐performance liquid chromatography coupled with diode‐array detection and electrospray ionization time‐of‐flight mass spectrometry was established. As a result, a total of 105 compounds were detected and identified. Analysis of the chromatogram profiles of the two decoctions showed that many compounds in the decoction of simplified preparation had changed obviously compared with those in traditional preparation. The changes of constituents would be bound to cause the differences in the therapeutic effects of the two decoctions. The present study demonstrated that certain preparation methods significantly affect the holistic quality of traditional Chinese medicines and the use of a suitable preparation method is crucial for these medicines to produce special clinical curative effect. This research results elucidated the scientific basis of traditional preparation methods in Chinese medicines.  相似文献   

4.
Shen‐Shuai‐Ning (SSN) granule, a traditional Chinese medicine formula, is widely used in clinical practice for treating chronic renal failure. However, its detailed chemical profile is unknown. Here, HPLC‐ESI‐QTOF‐MS was employed for the systematic chemical analysis of SSN. A total of 52 compounds were identified and the characteristic ions of the compounds were described. Furthermore, chemical consistency between the combined decoction and the separated decoction of SSN was evaluated using HPLC‐DAD. A chemical comparison between two preparations of SSN granule (combined decoction and separated decoction of Coptides Rhizoma) indicated a significant difference in the content of many compounds, including salvianolic acid A, salvianolic acid B, berberine, palmatine and epiberberine. As a result, separated decoction of Coptides Rhizoma would lead to a significantly decrease in depsides in Salviae Miltiorrhizae Radix et Rhizoma and an increase in alkaloids in Coptidis Rhizoma.  相似文献   

5.
6.
The Yinchen–Zhizi herb pair (YZHP) consists of Herba Artemisiae Scopariae (Yinchen in Chinese) and Fructus Gardeniae (Zhizi in Chinese), and is mainly used to treat icteric hepatitis, itching skin and eczema. However, the bioactive constituents responsible for the pharmacological effects of YZHP are still unclear to date. In this work, a rapid and sensitive method was established to comprehensively study the constituents in YZHP extract by HPLC‐Q‐TOF MS/MS. The analysis was performed on an HPLC system equipped with an Agilent poroshell 120 EC‐C18 column (100 × 2.1 mm, 2.7 mm) working in a gradient elution program coupled to quadrupole‐time‐of‐flight mass spectrometry operating in the negative ion mode. As a result, a total of 46 compounds including 17 from Herba Artemisiae Scopariae and 36 from Fructus Gardeniae were detected and tentatively identified in YZHP extract by comparing the retention time and mass spectrometry and retrieving the reference literature. More importantly, a series of constituents, such as many iridoid glycosides, were reported for the first time in this formula. The HPLC‐Q‐TOF MS/MS method was developed and utilized successfully to identify the major constituents in YZHP extract and would be helpful for further metabolism and pharmacology research on YZHP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Danshen (DS) is a widely used traditional Chinese medicine for treating cardiovascular and cerebrovascular diseases. A simple, rapid and sensitive method was developed for identification of the in vivo metabolites in urine of WZS‐miniature pigs after oral administration of DS decoction by HPLC coupled with diode array detection with electrospray ionization tandem ion trap and time‐of‐flight mass spectrometry. This method has been successfully applied to simultaneous identification of 50 compounds (including 11 new ones) in pig urine. In addition, one new compound, (3‐hydroxyphenyl) crylic acid glycine methyl ester (C1), along with eight known ones were first isolated by column chromatography and identified by spectroscopic means, including 1D/2DNMR and mass spectrometry, as reference substances. Ten phenolic compounds (protocatechuic aldehyde, protocatechuic acid, caffeic acid, danshensu, ferulic acid, isoferulic acid, rosmarinic acid and salvianolic acid A/B/D) were found to be the main absorbed original constituents of DS decoction, which underwent the metabolic reactions of glucuronidation, sulfation, methylation, hydrogenation and glycine conjugation in vivo. In conclusion, the developed method is applicable to the analysis and identification of constituents in biological matrices after administration of DS decoction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Jin‐Mu‐Gan‐Mao tablet is a well‐known traditional Chinese medicinal preparation, which has been used to treat the common cold in China. In this study, a systematic method was established for the qualitative and quantitative analysis of the major constituents in Jin‐Mu‐Gan‐Mao tablet. First, a method of high‐performance liquid chromatography with diode‐array detection and quadrupole time‐of‐flight mass spectrometry was developed for identification of the multi‐constituents. Thirty‐one compounds including ten phenolic acids, 18 flavonoids, and three iridoid glycosides were clearly identified by comparison with the reference standards, and 11 compounds were deduced by comparison with the literature data. Second, a new quantitative analysis method of Jin‐Mu‐Gan‐Mao tablet was established by high‐performance liquid chromatography with diode‐array detection. Twelve compounds, either with high contents or strong bioactivities, were chosen as marker components. This analytical method was validated through intra‐ and interday precision, repeatability, and stability, with respective relative standard deviations less than 1.74, 2.54, 2.44, and 2.48%. The limits of detection and quantification were less than 0.327 and 0.881 μg/mL, respectively. The overall recoveries ranged from 97.04–102.76% (relative standard deviation ≤ 2.91%). Then this validated method was applied to determine ten batches of Jin‐Mu‐Gan‐Mao tablet. The results indicated that these new approaches can be applicable for the qualitative and quantitative analysis of Jin‐Mu‐Gan‐Mao tablet.  相似文献   

9.
The Wen‐Jing decoction, a traditional Chinese medicine formula, has been used as a blood‐activating and stasis‐eliminating drug to treat gynaecological syndromes, such as dysmenorrhea, amenorrhea, and menstrual disorders. However, its pharmacodynamic material basis and mechanism of action have not been thoroughly elucidated to date. The goal of this study was to characterize and identify multiple constituents and metabolites in Wen‐Jing decoction. An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was established and validated in the present study for the first time. A total of 101 compounds, including 11 monoterpene glycosides, 19 flavonoids, 49 triterpene saponins, 5 phthalides, 3 phytoecdysones, and 14 others, were unambiguously or tentatively characterized by comparing their retention times and MS data with reference standards or with data reported in the literature. After oral administration of Wen‐Jing decoction, 27 compounds, including nine prototype compounds and 18 metabolites were detected in rat plasma. Thus, the ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was found to be efficient for in‐depth structural elucidation of chemical compounds in complex matrices of herbal medicines, which will provide useful chemical information for quality control and mechanism‐of‐action research.  相似文献   

10.
Herbal medicines are commonly used in many countries after they undergo processing. Quality decoction pieces are a guarantee of the efficacy and safety of the herbal medical products. Here, a strategy based on chemical analysis combined with chemometric techniques was proposed for the classification and prediction of the different grades of the decoction pieces. Considering the necessity for a shared and simple method for the grade classification for the public, in this paper, the characterization of the chemical constituents was determined by utilizing high‐performance liquid chromatography (HPLC)/diode array detection. HPLC was first established for the characterization of the chemical constituents of the different grade decoction pieces. Furthermore, a simultaneous quantification of several of the marker compounds in these decoction pieces was obtained. Finally, a partial least squares‐based pattern recognition method was utilized to obtain a predictive model for the grade classification of the decoction pieces. Saposhnikovia divaricata (Turcz.) Schischk was used as a case study. The partial least squares ‐based pattern recognition for the grade classification of the decoction pieces of S. divaricata demonstrated good sensitivity, specificity and prediction performance, which may efficiently validate the identification results of appearance assessment. The proposed strategy is expected to provide a new insight for the grade classification and quality control of the decoction pieces. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is widely used for the treatment of cardiovascular and cerebrovascular diseases. This research focuses on the in vivo metabolism of Danshen decoction (DSD) in rats. After oral administration of DSD, the absorptive constituents and their metabolites in urine and plasma were analyzed by HPLC coupled with a photodiode array detector and electrospray ionization hybrid ion trap and time‐of‐flight mass spectrometry. Samples were separated on a C18 column by gradient elution using 0.1% (v/v) aqueous formic acid and acetonitrile. As a result, 93 compounds from urine and 38 compounds from plasma were identified. Among them, lipo‐soluble diterpenoids (24 in urine and 15 in plasma) were reported for the first time as in vivo metabolites of DSD. According to the quantities and contents of the identified compounds, tanshinone IIA, cryptotanshinone and tanshinone I were deduced to be the major absorptive diterpenoids of DSD. Moreover, nine water‐soluble phenolics (caffeic acid, ferulic acid, danshensu, etc.) were proved to be the major absorptive constituents as reported. Most of the absorbed constituents underwent sulfation, glucuronidation, hydrogenation and hydroxylation in vivo. This investigation provided scientific evidence to obtain a more comprehensive metabolic profile of DSD. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Er‐Zhi‐Pill, which consists of Ligustri lucidi fructus and Ecliptae prostratae herba , is a classical traditional Chinese medicinal formulation widely used as a liver‐nourishing and kidney‐enriching tonic. To identify the bioactive ingredients of Er‐Zhi‐Pill and characterize the variation of chemical constituents between co‐decoction and mix of individually decocted L. lucidi fructus and E. prostratae herba , a novel metabolomics approach based on ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry in both positive and negative ion modes, was established to comprehensively analyze chemical constituents and probe distinguishable chemical markers. In total, 68 constituents were unambiguously or tentatively identified through alignment of accurate molecular weights within an error margin of 5 ppm, elemental composition and fragmentation characteristics, including eight constituents, which were confirmed by comparing to reference standards. Furthermore, principal component analysis and partial least squares discriminant analysis using Simca‐p+ 12.0 software were applied to investigate chemical differences between formulations obtained by co‐decoction and a mixture of individual decoctions. Global chemical differences were found in samples of two different decoction methods, and 16 components, including salidroside, specneuzhenide and wedelolactone, contributed most to the observed differences. This study provides a basic chemical profile for the quality control and further mechanism research of Er‐Zhi‐Pill.  相似文献   

16.
High‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry (HPLC‐TOF/MS) and high‐performance liquid chromatography–triple quadrupole mass spectrometry (HPLC‐QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang‐Fuzi‐Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC‐QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC‐QQQ/MS/MS with multiple reaction monitoring mode. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r > 0.9992). The relative standard deviations (RSD) of inter‐ and intra‐day precisions were <3%. This method was also validated by repeatability, stability and recovery with RSD <3% respectively. A highly sensitive and efficient method was established for chemical constituents studying, including identification and quantification of Mahuang‐Fuzi‐Xixin decoction.  相似文献   

17.
18.
Fu‐Ke‐Zai‐Zao pills, the famous traditional Chinese medicine formula, composed of 42 medicinal herbs, have been widely used to treat various gynecological diseases. However, the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills remain largely unknown, which hampers improvement of the quality control and pharmacological elucidation of this formula. In the present study, a sensitive and selective ultra high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry method was developed to separate and identify the comprehensive chemical constituents of Fu‐Ke‐Zai‐Zao pills. According to the results, a total of 83 compounds were identified, including phenylpropionic acids, flavonoids, terpenoids, triterpene saponins, and phthalides, and 81 compounds were first reported in Fu‐Ke‐Zai‐Zao pills. Moreover, the absorbed components and metabolites in rat plasma after intragastric administration of Fu‐Ke‐Zai‐Zao pills were also detected by the same analytical method. A total of 36 compounds were identified, including 21 prototypes and 15 metabolites. The latter were generated through the metabolic pathways of methylation and glucuronidation, and glucuronidated metabolites were the main constituents in the plasma. This is the first systematic study on the chemical constituents and metabolic profiling of Fu‐Ke‐Zai‐Zao pills, and the results provide valuable chemical information for further elucidating pharmacological effects and mechanism of action of Fu‐Ke‐Zai‐Zao pills.  相似文献   

19.
Xiao Chai Hu Decoction (XCHD), named Sho‐saiko‐to in Japanese, is a well‐known traditional Chinese medicine formula used in Asia. However, the characterization methods used in the past have lacked sensitivity and the nature of the active constituents of XCHD remains unclear. This study was carried out to establish the hyphenated method of bioactivity‐guided fractionation and liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (LC‐ESI‐QTOFMS/MS) in order to identify the major bioactive constituents of XCHD. D101 macroporous resin was used to separate and enrich the material base into four fractions, XCHD‐1, XCHD‐2, XCHD‐3 and XCHD‐4. Each fraction was then evaluated for its antidepressant effect using depression‐related parameters. An LC‐ESI‐QTOFMS/MS method in both positive and negative ion mode was also applied for separation and identification of the biological active fractions of XCHD. As a result, 79 compounds including polysaccharides, flavonoids, saikosaponins, ginsenosides, licoricesaponins and gingerols were detected, 69 of them were identified or tentatively characterized. Based on our preliminary characterization investigations, polysaccharides, gingerols and flavonoids in XCHD may contribute to the antidepressant effect of XCHD. In conclusion, the hyphenated method of bioactivity‐guided fractionation and LC‐ESI‐QTOFMS/MS was meaningful for the isolation and preliminary identification of the biological active components in complex matrices of traditional Chinese medicine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Comprehensive characterization of the large number of compounds existing in traditional Chinese medicines is still a great challenge. In this study, a strategy of precursor ion selected acquisition coupled with target and nontarget data mining was established to systematically characterize the chemical constituents of traditional Chinese medicines. This strategy consisted of four steps: (1) precursor ion selected acquisition was developed to trigger additional tandem mass spectrometry fragmentation reactions, especially for trace constituents; (2) in‐house database of compounds was established and diagnostic characteristics were summarized; (3) compounds were identified by target and nontarget data mining; and (4) compound structures were elucidated based on accurate mass matching and comparison of fragment ions, and isomers were discriminated by the intensity of fragment ions, fragmentation pattern analysis, and calculated log P values. This strategy was successfully applied to comprehensively identify the constituents in Dachuanxiong decoction. Finally, a total of 218 compounds assigned to six categories were characterized, and 107 compounds were characterized by nontarget analysis for the first time. In addition, three new diagnostic characteristics of esters of citric acids were elucidated. This research enriched the material basis of Dachuanxiong decoction and provided a new strategy for identifying the chemical constituents of other traditional Chinese medicines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号