首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
Dual‐responsive micrometer‐sized core‐shell composite polymer particles were prepared by dispersion polymerization followed by seeded copolymerization. Polystyrene (PS) particles prepared by dispersion polymerization were used as core particles. N‐isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) were used to induce dual‐responsive that is thermo‐ and pH‐responsive properties in the shell layer of composite polymer particles, prepared by seeded copolymerization with PS core particles. Temperature‐ and pH‐dependent adsorption behaviors of some macromolecules on composite polymer particles indicate that produced composite polymer particles exhibit dual‐responsive surface properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, maleic anhydride grafted styrene–ethylene–butadiene–styrene copolymer (SEBS‐g‐MA) and carbon nanotubes (CNTs) were introduced into the immiscible polypropylene/polystyrene (PP/PS) blend. Among the three polymer components, SEBS‐g‐MA has the strongest affinity to CNTs; thus, it exhibits dual effects to adjust the phase morphology of the blends and the dispersion state of CNTs in the blends. The experimental observations obtained from morphology characterizations using scanning electron microscope and transmission electron microscope confirm the selective localization of CNTs at the interface of the immiscible PP/PS blend. As a consequence, largely decreased percolation threshold is achieved when most of CNTs are selectively localized at the interface region between PP and PS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Calcium carbonate (CaCO3)/polystyrene (PS) nanoparticles (<100 nm) with core–shell structure were synthesized by atomized microemulsion technique. The polymer chains were anchored onto the surface of nano‐CaCO3 through triethoxyvinyl silane (TEVS) as a coupling agent. Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n‐pentanol were used as initiator, surfactant, and cosurfactant, respectively. Polymerization mechanism of core–shell latex particles was discussed. Encapsulation of nano‐CaCO3 by PS was confirmed by using transmission electron microscope (TEM). Grafting percentage of core–shell particles was investigated by Thermogravimetric Analyzer (TGA). Nano‐CaCO3/PS core–shell particles were characterized by Fourier transform infrared (FTIR) spectrophotometer and differential scanning calorimeter (DSC). The results of FTIR revealed existence of a strong interaction at the interface of nano‐CaCO3 particle and PS, which implies that the polymer chains were successfully grafted onto the surface of nano‐CaCO3 particle through the link of the coupling agent. In addition, TGA and DSC results indicated an enhancement of thermal stability of core–shell materials compared with the pure nano‐PS. Nano‐CaCO3/PS particles were blended with polypropylene (PP) matrix on Brabender Plastograph by melt process with different wt% of loading (i.e. 0.1–1 wt%). The interfacial adhesion between nano‐CaCO3 particles and PP matrix was significantly improved when the nano‐CaCO3 particles were grafted with PS, which led to increased thermal, rheological, and mechanical properties of (nano‐CaCO3/PS)/PP composites. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed a perfect dispersion of the nano‐CaCO3 particles in PP matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Copper nanowire (CuNWs)/polystyrene (PS) composites were prepared by melt mixing using unfunctionalized and functionalized nanowires. Alkanethiols were utilized to modify the surface of CuNWs postsynthesis and enable their dispersion in a polymer melt. Unfunctionalized nanowires decreased the electrical resistivity of PS by nine orders of magnitude with 2.0 vol % Cu, and resulted in composites with a viscoelastic behavior dominated by polymer–polymer networks indicating that electrical percolation occurred without a transition from liquid‐like to solid‐like behavior (i.e., rheological percolation). Results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), and melt rheology characterization indicated that surface modification of CuNWs contributed to the dispersion of the nanofiller in the polymer matrix. CuNWs functionalized with 1‐octanethiol and 1‐butanethiol produced rheological percolation and a gradual decrease in the electrical resistivity of the PS nanocomposites with increasing concentration of nanowires. Polymer nanocomposites with low concentrations of functionalized nanowires showed lower complex viscosities than pure PS; this was attributed to a plasticizing effect introduced by the alkanethiols. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2064–2078, 2008  相似文献   

5.
Fabrication of polymer‐carbon composite nanostructure with good dispersion of each other is critical for the desired application due to the nanostructure flaws, agglomeration, and poor absorption between the 2 materials. Fabrication of superhydrophobic surface coating composites of polytetrafluoroethylene (PTFE) with multiwalled carbon nanotubes (MWCNTs) through supercritical fluid processing was explored in this study. Homogeneity of the composite was characterized by X‐ray diffraction and Raman spectroscopy studies, which reveal that the PTFE and MWCNT are uniform in the composite. Microstructural surface evaluation of field‐emission scanning electron microscope and high‐resolution transmission electron microscope studies display that the coating composite possesses roughness structures and fibrillation of the superhydrophobic surface coating. Superhydrophobic character was evaluated on fiber‐reinforced plastic (FRP) sheets, which showed that the prepared coating composite surface showed self‐cleaning properties with a high water contact angle of 162.7°. The surface wettability was studied by increasing different temperatures (30°C to 300°C) in PTFE‐MWCNT composite, which reveals that the FRP sheets were thermally stable up to 200°C and afterward; they transformed from superhydrophobic to hydrophilic state at 250°C. The superhydrophobic surfaces are thermally stable in extreme environmental conditions, and this technique may be used and extendable for large‐scale applications.  相似文献   

6.
Thin composite films consisting of liquid crystal (LC) domains surrounded by polymer networks, termed as polymer stabilised liquid crystals (PSLCs), were prepared by photo-polymerisation of a pre-polymer dissolved in LC. Four composite films were prepared with different rubbing directions and with and without electric field during photo-polymerisation. Morphological characterisation carried our using a polarising optical microscope (POM) and a scanning electron microscope (SEM) reveal significant changes in LC domain morphology and associated polymer networks with the application of electric field during the fabrication of the films. The electro-optic (EO) properties of PSLC films placed between two crossed polarisers were studied using a He–Ne laser under an action of externally applied electric field. It was found that the PSLC film with twisted alignment and polymerised in the presence of electric field showed better EO properties than other films. Transmittance obtained by EO studies was verified with absorbance studies using a Ultraviolet-Visible spectrophotometer. The dielectric behaviour of PSLC films in the frequency range 20–20 MHz was investigated using a precision impedance analyser. The obtained data were modelled using Debye and Cole–Cole methods to calculate relaxation time and distribution parameter. The relaxation time calculated through the Cole–Cole model is in agreement with response time.  相似文献   

7.
以原位化学沉淀的方法制备了不同粒径、包覆结构PS(核)/CeO2(壳)复合微球,利用X射线衍射仪、透射电子显微镜、选区电子衍射、场发射扫描电子显微镜、能谱分析仪、Fourier转换红外光谱仪、热失重分析仪和ζ电位测定仪等手段对所制备样品的微观结构进行了表征。将所制备的复合微球用做磨料,考察其对二氧化硅介质层的抛光性能,用原子力显微镜观察和测量抛光表面的微观形貌、轮廓曲线和粗糙度。结果表明,所制备的PS/CeO2复合微球具有核壳包覆结构,粒径分别约为140,180和220 nm,PS内核被粒径约为5 nm的CeO2颗粒均匀包覆。AFM结果显示,复合磨料的粒径越小,抛光后表面粗糙度越低;且酸性(pH=3)比碱性(pH=10)抛光浆料具有更好的抛光效果。  相似文献   

8.
Gold nanoparticles‐coated polystyrene (AuNPs‐coated PS) composite particles with raspberry‐like morphology are successfully prepared with the aid of a unique thermodynamically driving effect. It is of considerable interest that the AuNPs generate and self‐assemble with raw, ordinary PS microspheres that preexist in the oxidation–reduction systems. The synthesized AuNPs‐coated PS composite particles have been extensively characterized using scanning electron microscope, transmission electron microscope, and UV–Vis‐NIR spectroscopy. The results indicate that the morphology of the resultant composite particles is governed by simply changing the amount and type of reductants and the concentration of PS microspheres. The AuNPs‐coated PS composite particles also exhibit the good surface‐enhanced Raman scattering and catalytic performances.

  相似文献   


9.
This article presents a facile, effective, mild synthesis process for well‐defined hollow spheres by using cationic polystyrene (PS) submicro‐particles as templates. In this approach, the cationic PS templates can be first prepared via emulsifier‐free polymerization by using the cationic monomer 2‐(methacryloyloxy) ethyltrimethylammonium chloride as comonomer, then, the silica shells from the sol‐gel process of tetraethoxysilane were coated on the surfaces of template particles via electrostatic interaction, finally the PS was dissolved in situ by modification of the reaction conditions in the same medium to form monodisperse hollow silica spheres with controlled shell thickness. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, Brunauer‐Emmett‐Teller, transmission electron microscopy, and scanning electron microscope measurements were used to characterize these hollow silica spheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1332–1338, 2010  相似文献   

10.
To overcome the disadvantages of protein denaturation and nonspecific adsorption on poly(styrene‐divinylbenzene) (PS) matrix as chromatographic supports, gigaporous PS microspheres, which we prepared in a previous study, were chemically modified with poly(vinyl alcohol) (PVA) through two‐step reaction. The microspheres were chloroacetylated through Friedel‐Crafts acetylation with chloroacetyl chloride and modified with hydrophilic PVA through Williamson reaction afterward. The modified microspheres were characterized by Fourier transform infrared (FTIR) spectra, X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), mercury porosimetry measurements (MPM), BET nitrogen adsorption measurements, laser scanning confocal microscope (LSCM), and protein adsorption experiments. Results showed that PS microspheres were successfully coated with PVA, while the gigaporous structure could be maintained. Consequently, the hydrophilicity and biocompatibility of modified microspheres was greatly improved and nonspecific adsorption of proteins was significantly decreased. The coatings contained only stable chemical bonds (e.g., C? C, C? O? C) and easily derived hydroxyl moieties. The large pores of gigaporous PS microspheres also facilitated the modification by PVA. After further derivation, the coated gigaporous base supports could apply in various modes of chromatography and have great potentials in high‐speed protein chromatography. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5794–5804, 2008  相似文献   

11.
The synthesis of graphene oxide (GO)–polystyrene (PS) Pickering emulsions, as environment‐friendly nanostructures suitable for novel applications, has received significant attention in recent years. In this work, the synthesis and characterization of GO–PS nanocomposites through seeded emulsion polymerization and the selective light reflection properties of dry films have been reported. Amphiphilic molecule sulfonated 3‐pentadecyl phenol was used as a co‐surfactant to stabilize GO dispersions during the emulsion polymerization process. The particle size of the dispersions as measured by dynamic light scattering decreases from 540 nm, for PS without any GO, to 88 nm with 1 wt% GO content. Scanning electron microscopy studies show a uniform size distribution of the composite particles prepared with GO. The dried films show a structural color that varies with the GO content. The self‐assembly behavior of the dried film was further studied using reflectance spectroscopy, which shows a red shift of the reflectance maximum from 440 to 538 nm as the GO loading was increased from 0.2 to 0.5 wt%, respectively, indicating a different microstructure. X‐ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to study the morphology and structure of the composite particles on drying. The AFM study confirms the non‐spherical shape of the particles. Thermogravimetric analysis shows improved thermal decomposition characteristics of the nanocomposite films. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We investigated the delamination problem at the metal‐polymer interface and the mechanical buckling of the metal layer at a localized area of the metallic shell under compression between two parallel plates. First, polystyrene (PS) beads were synthesized by dispersion polymerization and then their sulfonation process. After sequential electroless deposition, the average size of multi‐metal coated sulfonated polystyrene (SPS) bead was ca 4.95 µm. Using the electromechanical indentation, the electrical resistance of a single metal‐coated SPS bead decreased with increasing compressive strain without delamination at the metal‐polymer interface, and its electrical resistance showed 5.65 Ω. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Multiwalled carbon nanotubes (MWNTs) were effectively functionalized with KMnO4 in the presence of a phase‐transfer catalyst at room temperature. The hydroxyl functionalized MWNTs were reacted with a vinyl‐group carrying silane‐coupling agent and the terminal vinyl groups were used to fabricate polystyrene (PS) brushes by solution polymerization. Finally, PS‐encapsulated MWNTs were obtained. The synthesis results were verified from FT‐Raman, thermal gravimetric analysis, energy dispersive X‐ray analysis, and transmission electron microscope. PS‐encapsulated MWNTs had much improved dispersion stability in hydrophobic medium, toluene since grafted hydrophobic PS interacts with media and has improved compatibility. This functionalization technique would provide a facile route to prepare various polymer brushes on the surface of MWNTs to improve the dispersion of MWNTs for potential applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4413–4420, 2007  相似文献   

14.
Characterization of polymer coatings microstructure is critical to the fundamental understanding of the corrosion of coated metals. An approach for mapping the chemical heterogeneity of a polymer system using chemical modification and tapping‐mode atomic force microscopy (TMAFM) is demonstrated. This approach is based on the selective degradation of one of the phases in a multiphase polymer blend system and the ability of TMAFM to provide nanoscale lateral information about the different phases in the polymer system. Films made of a 70:30 polyethyl acrylate/polystyrene (PEA/PS) blend were exposed to a hydrolytic acidic environment and analyzed using TMAFM. Pits were observed to form in the PEA/PS blend films, and this degradation behavior was similar to that of the PEA material. Using these results, the domains in the 70:30 blend were identified as the PS‐rich regions and the matrix as the PEA‐rich region. This conclusion was confirmed by Fourier transform infrared‐attenuated total reflection analyses that revealed the hydrolysis of the PEA material. TMAFM phase imaging was also used to follow pit growth of the blend as a function of exposure time. The usefulness of the chemical modification/AFM imaging approach in understanding the degradation process of a coating film is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1460–1470, 2001  相似文献   

15.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

16.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

17.
Summary: Submicron-sized monodisperse PS particles were prepared by dispersion polymerization of styrene in ionic liquids with poly(vinylpyrrolidone) as stabilizer. Seeded dispersion polymerization of MMA was subsequently carried out with PS seeds in [Bmim][BF4] to prepare PS/PMMA composite particles. Observation of the obtained particles of ultrathin cross-sections with a scanning and transmission electron microscope revealed that no secondary nucleation occurred during the seeded dispersion polymerization and that the particles have a core-shell morphology consisting of a PS core and a PMMA shell. Successful preparation of PS/PMMA composite particles in an ionic liquid has thus been demonstrated. Moreover, PS/PAA (PS-core/PAA-shell) composite particles were prepared by seeded dispersion polymerization in [DEME][TFSI], illustrating that hydrophobic/hydrophilic composite particles can be readily prepared in the ionic liquid.  相似文献   

18.
We introduce a simple method to create nanosized, ordered, and highly luminescent thin film of Eu (III)–block copolymer complex. Micelles of polystyrene–block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in P4VP‐selective solvents (ethanol/N,N‐dimethylformamide (DMF) mixture) serve as nanoreactors for the synthesis of Eu(III)–block copolymer complex with the presence of 1,10‐phenanthroline (Phen) as cooperative ligand. The resulted quaternary complexes were characterized by FT‐IR spectra, 15N NMR spectra, and elemental analysis, indicative of a composition of Eu(III)–(PS‐b‐P4VP)–Phen–5DMF. Atomic force microscopy and transmission electron microscopy investigations reveal that the Eu(III)–(PS‐b‐P4VP)–Phen–5DMF complex can self‐organize into hexagonally ordered thin films when dip‐coated from the solution onto silicon or silica glass substrates. Such ordered thin films can emit red fluorescence of Eu3+ with strong intensity and long lifetime. This method can be easily extended to prepare other ordered luminescent rare earth–polymer complexes thin films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2181–2189, 2005  相似文献   

19.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号