首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Two types of polymer‐supported nanometal catalysts with high catalytic activity and recyclability in water have been developed. One catalyst was composed of linear polystyrene‐stabilized metal nanoparticles (PS‐MtNPs). A palladium catalyst (PS‐PdONPs) was prepared in water by the thermal decomposition of Pd(OAc)2 in the presence of polystyrene. The degree of immobilization of Pd, but not the size of the Pd nanoparticles, was dependent on the molecular weight and cross‐linking of the polystyrene. The PS‐PdONPs exhibited high catalytic activity for Suzuki, Heck, and Sonogashira coupling reactions in water and they could be recycled without loss of activity. Linear polystyrene was also suitable as a stabilizer for in situ generated PdNPs and PtNPs. The second catalyst was a polyion complex that was composed of poly[4‐chloromethylstyrene‐co‐(4‐vinylbenzyl)tributylammonium chloride] and poly(acrylic acid)‐stabilized PdNPs (PIC‐PdNPs). Aggregation and redispersion of PIC‐PdNPs were easily controlled by adjusting the pH value of the solution.  相似文献   

2.
A novel magnetic-responsive complex composed of polycation, DNA, and polyanion has been constructed via electrostatic interaction. The magnetic nanoparticles (MNPs) were first coated with a polycation, poly[2-(dimethylamino)ethyl methacrylate] end-capped with cholesterol moiety (Chol-PDMAEMA(30)), and then binded with DNA through electrostatic interaction; the complexes were further interacted with the brush-type polyanion, namely poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly[methacrylic acid carrying partial mercapto groups] (PPEGMA-b-PMAA(SH)). The resulting magnetic particle/DNA/polyion complexes could be stabilized by oxidizing the mercapto groups to form cross-linking shell with bridging disulfide (S-S) between PPEGMA-b-PMAA(SH) molecular chains. The interactions among DNA, Chol-PDMAEMA coated MNPs, and PPEGMA-b-PMAA(SH) were studied by agarose gel retardation assay. The complexes were fully characterized by means of zeta potential, transmission electron microscopy (TEM), dynamic light scattering (DLS) measurements, cytotoxicity assay, antinonspecific protein adsorption, and in vitro transfection tests. All these results indicate that this kind of magnetic-responsive complex has potential applications for gene vector.  相似文献   

3.
A polyion complex was formed from poly(acrylic acid) (PAA) and poly(4-vinylpyridine) (PVP). Its structure and composition were examined by means of infrared spectroscopy (IR), x-ray photoelectron spectroscopy (XPS), and elemental analysis. The polyion complex was obtained by dissolving PAA and PVP together in methanol. The composition of the polyion complex was independent of stirring speed, mixing sequence, and standing time after mixing. However, the composition depended on the concentrations and the ratio of the components in the reaction mixture. Excess of PAA in the product was observed when concentrated solutions (2.0 × 10?1M) were used for the preparation or when an excess of PAA was added to PVP. The sorption of water vapor by an equimolar PAA/PVP complex at 293 and 303 K was higher than that by the pure components, especially in the low- and middle-pressure regions. In the high-pressure region, however, the uptake was not affected by the complex formation. While hydrogen bond interactions in general decrease sorption, Coulombic interactions between polymer chains increased the sorption capacity.  相似文献   

4.
Nonstoichiometric interpolyelectrolyte complexes (IPECs) as colloidal dispersions have been widely used for the past decade as reactive materials for flocculation and surface modification. In this context, some new aspects of the preparation and properties of IPEC nanoparticles based on NaPAMPS, in salt‐free aqueous solutions, are reported in this article. IPEC dispersions with different characteristics, z‐averaged particle sizes, polydispersity indices, and colloidal stabilities were tailored by the addition rate of the titrant, a less investigated factor in the synthesis of IPECs as nanoparticles. Poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate) (NaPAMPS) and two polycations bearing positive charges in the backbone, poly(diallyldimethylammonium chloride) and a polycation containing 95 mol % N,N‐dimethyl‐2‐hydroxypropyleneammonium chloride units, were used for this purpose. The complex nanoparticle characteristics and storage stability were monitored via the optical density at 500 nm and dynamic light scattering. IPEC nanoparticles with z‐averaged particle sizes of 100–250 nm resulted from the same polyion pair and the same polyion concentrations when the addition rate of the titrant, either the polyanion or polycation, varied within the range of 0.1–1.5 mL/mL of the starting polyion × h. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5244–5252, 2004  相似文献   

5.
Biocompatible magnetic nanoparticles were prepared by co-precipitation method in the presence of poly (aspartic acid) (PAsp) as stabilizer, which was one of the most extensively studied and used poly(amino acids). As a biocompatible dispersant, PAsp was successfully attached to the Fe3O4 nanoparticles, which was approved by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). From X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) measurement results, it was found that PAsp stabilized iron oxide nanoparticles possess excellent Fe3O4 crystal structure and superparamagnetic property. Compared with trisodium citrate stabilized magnetic nanoparticles, PAsp stabilized magnetic nanoparticles were biocompatible and with lower cytotoxicity, which makes it more applicable in medicine, biology and biomaterial science.  相似文献   

6.
The extent of binding of 1-amino-4-alkylaminoanthraquinone-2-sulfonates (alkyl?methyl, ethyl, propyl, and butyl), which have different chemical structures from methyl orange derivatives, by polyion complexes consisting of a piperidinium cationic polymer and various polyanions such as sodium poly acrylate, poly methacrylate, poly styrenesulfonate, carboxymethylcellulose, and dextran sulfate, was measured in an aqueous solution. The effect of alkyl group of the anthraquinone dye on the binding behavior was investigated. Also, the resultant binding characteristics were compared with those previously observed with methyl orange and its homologs. These polyion complexes exhibited very strong binding affinity toward the anthraquinone dye. The polyion complex of the polycation and sodium poly styrenesulfonate bound the dye noncooperatively and the binding process was athermal. The first binding constant accompanying the binding is of the order of 105–106. In contrast, the polyion complexes composed of the polycation and the other polyanions exhibited strong cooperative binding and the binding process was exothermic. The possible mode of binding is discussed.  相似文献   

7.
A study was made of the formation of polyion complexes between a piperidinium cationic polymer and polyanions and of the binding of azo-dye anions (methyl, ethyl, propyl, and butyl orange) by these complexes. Sodium poly(acrylate), poly(styrenesulfonate), dextran sulfate, and carboxy-methylcellulose were used as polyanions. The resultant polyion complexes (insoluble in aqueous solutions) were compared for their ability to bind the small organic molecules in aqueous solutions, for example, of urea and an inorganic electrolyte (KCI), and exhibited a strong binding affinity toward these small anions. Polyion complexes that consisted of sodium poly(acrylate), dextran sulfate, and carboxymethylcellulose as polyanions cooperated in the binding, whereas the polyion complex of sodium poly(styrenesulfonate) did not. It was suggested that small organic anions interact with the polyion complexes primarily through electrostatic and hydrophobic forces.  相似文献   

8.
Polymeric micelles with a polystyrene core, poly(acrylic acid)/poly(4-vinyl pyridine) (PAA/P4VP) complex shell and poly(ethylene glycol) & poly(N-isopropylacrylamide) (PEG & PNIPAM) mixed corona were synthesized and used as the supporter for the gold nanoparticles (GNs). It was concluded from the result of 1H NMR characterization that hydrophilic channels formed around PEG chains when PNIPAM collapsed above its lower critical solution temperature. The density of the channels in the corona can be tuned by changing the weight ratios of PEG chains to PNIPAM chains. The GNs were set in the PAA/P4VP complex layer and the catalytic activity of the GNs can be modulated by the channels. The catalytic activity increased with increasing the density of the channels in the corona. Meanwhile, the whole Au/micelle nanoparticles were stabilized by the extended PEG chains.  相似文献   

9.
It was found that the reduction of copper(II) ions in solutions of poly(acrylic acid)-pluronic blends results in a stable sol of metallic copper with a particle size below 10 nm, whereas a less stable sol with coarse aggregates of particles is formed in the presence of poly(acrylic acid) alone and an insoluble complex of this polymer with copper nanoparticles is produced in the presence of pluronic alone. The addition of poly(acrylic acid) to the complex causes the transfer of a portion of nanoparticles from the precipitate into the sol. In mixed poly(acrylic acid) and pluronic solutions, no formation of a polymeric complex with reasonable stability was detected. It was assumed that such a polycomplex is stabilized in the presence of copper nanoparticles. Owing to its amphiphilic nature, the complex forms stable protective shields on the surface of nanoparticles, and the stability of the sol is determined by free fragments of poly(acrylic acid).  相似文献   

10.
Traditional modifications to hydroxyapatite(HA) nanoparticles usually occurred after HA synthesis and thus are insufficient to avoid particle agglomeration.In this study,a new heterofunctional poly(ethylene glycol)(PEG) with phosphoric acid and carboxyl end groups,i.e.,α-(N-2-phosphoethyl phosphoric acid)-amide,ω-carboxyl-bismethyoxy poly(ethylene glycol)(ADP-PEG-COOH),was synthesized as an in situ surface modifier to HA nanoparticles.The resulting modified HA(ADP-PEG-HA) can disperse in methanol,forming a colloid stabilized by peripheral carboxyl-endcapped PEG chains.The colloidal particles resembled nanospheres which agglomerated to some extent under examination by transmission electron microscope.This highly dispersible HA nanoparticles in organic solvent might find application in preparing new HA nanocomposites.  相似文献   

11.
Copper sols stabilized by a polymer-colloid complex are studied via dynamic light scattering and transmission electron microscopy. It is shown that the polymer-colloid complex including poly(acrylic acid) and the nonionogenic polymeric surfactant poly(ethylene glycol-600-monolaurate) is an effective protector of copper nanoparticles formed via the reduction of Cu2+ ions in an aqueous medium. The sizes of sol particles of the nanocomposite consisting of the polymer-colloid complex and copper nanoparticles depend on the method of preparation of the nanocomposite. The incorporation of the copper nanoparticles being formed (an average diameter of 5 nm) into particles of the polymer-colloid complex leads to an insignificant change in the sizes of the complex particles. The same sizes are typical for particles of the nanocomposite formed during the introduction of surfactant micelles in the copper sol formed in the solution of poly(acrylic acid). The interaction of copper nanoparticles formed in an aqueous medium with surfactant micelles entails their aggregation; as a result, these nanoparticles turn out to be incorporated into large aggregates with equivalent radii of up to 100 nm. When poly(acrylic acid) is incorporated into this sol, the sizes of its particles insignificantly change apparently because of the low rate of structural rearrangements accompanying the formation of the polymer-colloid complex.  相似文献   

12.
This paper reports on the preparation, characterization and stealthiness of superparamagnetic nanoparticles (magnetite Fe3O4) with a 5 nm diameter and stabilized in water (pH ? 6.5) by a shell of water-soluble poly(ethylene oxide) (PEO) chains. Two types of diblock copolymers, i.e., poly(acrylic acid)-b-poly(ethylene oxide), PAA-PEO, and poly(acrylic acid)-b-poly(acrylate methoxy poly(ethyleneoxide)), PAA-PAMPEO, were prepared as stabilizers with different compositions and molecular weights. At pH ? 6.5, the negatively ionized PAA block interacts strongly with the positively-charged nanoparticles, thus playing the role of an anchoring block. Aggregates of coated nanoparticles were actually observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter was in the 50-100 nm range and the aggregation number (number of nanoparticles per aggregate) was lying between several tens and hundred. Moreover, the stealthiness of these aggregates was assessed “in vitro” by the hemolytic CH50 test. No response of the complement system was observed, such that biomedical applications can be envisioned for these magnetic nanoparticles. Preliminary experiments of magnetic heating (10 kA/m; 108 kHz) were performed and specific absorption rate varied from 2 to 13 W/g(Fe).  相似文献   

13.
Positively polarized gold nanoparticles have been demonstrated for use as stable olefin carriers for facilitated olefin transport membranes. The formation and size of gold nanoparticles stabilized by 4-dimethylaminopyridine (DMAP) were monitored using X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible spectroscopy. Nanocomposite membranes that deliver high separation performance for olefin/paraffin mixtures were prepared by dispersing gold nanoparticles stabilized by DMAP in a polymer matrix, poly(vinyl pyrrolidone) (PVP). X-ray photoelectron spectroscopy (XPS) and zeta potential measurements revealed that gold nanoparticles stabilized by DMAP exhibited a high positive polarity, which is responsible for the reversible interaction between the gold nanoparticles and olefin molecules. Compared to neat PVP membranes, the composite membranes consisting of PVP and the polarized gold nanoparticles showed stable and enhanced separation of olefin/paraffin mixtures.  相似文献   

14.
The processes of swelling of poly(acrylic acid) ferrogels prepared via radical polymerization in an aqueous suspension of ferric oxide nanoparticles with the weighted average size of 23.5 nm obtained by laser evaporation method and stabilized by chitosan (М = 5.3 × 105 and degree of deacetylation of 62%) are studied. The swelling of washed ferrogels depends on the content of chitosan and decreases abruptly at a polymer concentration exceeding 1 g/L. At a chitosan concentration above 1 g/L, the chemical network of poly(acrylic acid) is formed on the fluctuation network of chitosan in solution. As pH increases, these ferrogels are contracted owing to formation of an interpolymer complex of chitosan with poly(acrylic acid) subchains.  相似文献   

15.
Mizutani F  Yabuki S  Hirata Y 《Talanta》1996,43(10):1815-1820
The concentration of L-lactic acid was determined by a combination of flow injection analysis with amperometric enzyme sensor detection. The enzyme sensor was prepared by immobilizing lactate oxidase in a layer of polyion complex consisting of poly-L-lysine and poly(4-styrenesulfonate). The sensor-based system can be used for the determination of L-lactate concentration up to 6 mM with a sampling rate of 120 h(-1), and is stable for 8 weeks after 1000 L-lactate injections. The permselectivity of the polyion complex matrix is effective for reducing the response from electrochemical interferents such as L-ascorbic acid, uric acid and acetaminophen.  相似文献   

16.
All-trans-retinoic acids (ATRA) are ionically complexed with cationic polyelectrolytes containing tertiary amines and self-assembled into nanoscale colloidal structures. Poly(2-(dimethylamino)ethyl methacrylate) grafted with polyethylene glycol, poly(DMAEMA-g-PEG), is used as a double hydrophilic, cationic polyelectrolyte. The polyion/ATRA complexes are formed by adding ATRA in dimethyl sulfoxide into aqueous solution of poly(DMAEMA-g-PEG). This complexation effectively suppresses the formation of undesirable drug crystallites and produces stable colloidal nanostructures having a hydrodynamic diameter of about 15?nm at a neutral pH. However, as the pH decreases below about 6, they undergo dramatic structural change into large aggregates of about 250?nm in diameter presumably due to the dissociation of ATRA from the polyelectrolyte. We expect that this pH-sensitive response of the polyion/ATRA complexes is useful for intracellular translocation at a neutral pH followed by the endosomal escape of ATRA in an acidic condition.  相似文献   

17.
The polyion micelles were prepared with poly(ethylene glycol)-block-poly(4-vinylpyridium) (PEG114-b-P(4-VPH+)35) and tetrakis (4-sulfonatophenyl) porphyrin (TPPS) in acid aqueous solution. Micellization was investigated by using a combination of static and dynamic laser scattering. UV–Vis spectroscopy revealed that the H- and J-type aggregates of TPPS were formed in the micellar core. Transmission electron microscopy studies of the polyion micelles show that the obtained polyion micelles take a diphase-segregated core, the polymer phase and the incompatible TPPS aggregates phase.  相似文献   

18.
Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag(+) and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag(+), and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.  相似文献   

19.
The present study investigates the relationship between the aggregation state and dynamic properties of block ionomer complexes (BICs) based on amphiphilic ionic block copolymers. The polyion coupling of 4'-(aminomethyl)fluorescein (AMF)-labeled poly(sodium methacrylate) (PMANa) or polystyrene- block-poly(sodium carboxylates) with poly(N-ethyl-4-vinylpyridinium bromide), PEVP was studied at an excess of carboxylate groups [PEVP]/[COO(-)] TOTAL = 0.3 and detected by fluorescence quenching. The polyion interchange reactions included migration of PEVP between the following: (1) two linear polyanion chains, (2) linear polyanion chain and anionic polyion shell micelle, or (3) two anionic polyion shell micelles. Additionally, the interchange of AMF-labeled PMANa with unlabeled PMANa in the shell of polystyrene- block-PEVP micelles was studied. The interchange reactions were carried out at [PEVP]/[COO(-)] TOTAL = 0.15 and detected by fluorescence quenching (direct reaction) or ignition (reverse reaction). The rates of these reactions were compared using half-conversion times and, when possible, second-order reaction kinetic constants. The dependences of the rates on the ionic strength and polyion length observed for BICs were similar to those previously reported for regular interpolyelectrolyte complexes (IPECs) of linear polyions. However, the interchange reactions involving polyion shell micelles were much slower than those reactions observed in IPECs. The coupling reactions involving polyion shell micelles were also slower compared with the coupling of linear polyions. The observed phenomena were attributed to the aggregation state of polyion shell micelles and discussed using the collision model for polyion interchange reactions previously proposed for IPECs.  相似文献   

20.
The effect of varying the fraction of charged monomer units of the polyion in aqueous polyion-oppositely charged surfactant complex salts has been investigated. The complex salts used were based on cetyltrimethylammonium (C16TA+) with three different polymeric counterions: poly(acrylate) (PA-) or poly(acrylate) copolymerized with either dimethylacrylamide (PA-/DAM) or N-isopropylamide (PA-/NIPAM). The charge density of the polyion was varied by either adding poly(acrylic) acid (PAA) to the C16TAPA complex salt (annealed charges) or by varying the fraction of uncharged units in the C16TAPA/DAM or C16TAPA/NIPAM complex salts (quenched charges). The formed phases were studied visually between crossed polarizers and by small angle X-ray scattering (SAXS). Both types of complex salts (annealed and quenched) formed hexagonal phases at high fractions of charged monomers and low water contents. Upon increasing the water content, a cubic phase of the Pm3n space group was found. Upon further addition of water, a miscibility gap with the cubic phase in equilibrium with pure water was found. Decreasing the fraction of charged monomers in the annealed complex salt resulted in an increase of the curvature of the surfactant aggregates. Only at very low (<0.05) fractions of charged monomers did the packing of the surfactant aggregates lose long-range order, and eventually, the miscibility gap disappeared. For the quenched complex salts, the changes upon decreasing the fraction of charged monomers in the polyion were similar, but the loss of long-range order occurred at much higher fractions of charged monomers. The average surfactant aggregation number in the surfactant aggregates, which was similar for the annealed and quenched systems, decreased when the fraction of charged monomers was decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号