首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In the paper, the poly(D,L-lactide) (PDLLA) and poly(ethylene glycol)-co-poly(D,L-lactide) (PELA) fibers with and without paracetanol drug loading were prepared with an electrospinning method. The morphology of the fibers was observed by scanning electronic microscope (SEM). Their glass transition temperatures (T(g)) were measured with differential scanning calorimetry (DSC). The water contact angle (CA) measurement was also performed to characterize surface properties of fibers. At 37 degrees C in a PBS buffer solution (pH 7.4), in vitro matrix degradation profiles of these fibers were characterized by measuring their weight loss, the molecular weight decrease, and their morphology change. The result showed that the effects of fiber diameter and porosities on the degradation of the electrospun scaffolds might exceed the effects of the molecular weight and the PEG contents, which was different from the polymeric microspheres degradation. In vitro paracetanol release profiles were also investigated in the same condition. The result showed that the drug burst release behaviour was mainly related with the drug-polymer compatibility and the followed sustained release phase depended on polymer degradation.  相似文献   

2.
Proteinase K was successfully loaded inside ultrafine fibers of poly(ethylene glycol)-poly(l-lactide) (PELA) by emulsion electrospinning. A core/shell fiber structure was formed and verified by a transmission electron microscope. In vitro biodegradation of electrospun PELA membranes containing proteinase K (PELA-P) was examined in Tris-HCl buffer solution at pH 8.6 and 37 °C in comparison with electrospun PELA membranes without proteinase K. During biodegradation, mass loss, water absorption, pH value of the incubated buffer, fibrous morphology and thermal properties were monitored. Results suggested that PELA-P membranes degraded significantly faster than PELA membranes. A significant drop in pH value of the buffer after incubation of PELA-P membranes for 1 d was observed, and after 7 d, PELA-P membranes lost their fibrous appearance and masses almost completely. In contrast, electrospun PELA membranes did not show any obvious changes. The obtained electrospun PELA-P membranes exhibited self-accelerated biodegradability and could benefit drug controlled release and tissue regeneration.  相似文献   

3.
This study was aimed to design core–sheath‐structured polymeric fibers for protein delivery through emulsion electrospinning to enhance the encapsulation efficiency (EE), structural integrity, and activity retention, and to achieve controllable protein release. Integral core–sheath structure was achieved for electrospun fibers with lysozyme loading efficiency of 93.3% and the specific activity retention (SAR) of 64.6%, while the surface protein content (SP) was as low as 4.2%. The emulsion components were optimized to minimize the burst release and extend the release period, and the release profiles were found to be closely related with the fiber characteristics such as the SPs. An initial burst release as low as 6.2% followed by gradual release for 33 days was indicated from poly(ethylene glycol)‐poly(DL ‐lactide) (PELA) fibers. The gradual protein release was determined by a competition of fiber collapse leading to accelerated release and fiber fusion leading to decelerated release. Dependent on the matrix polymer and protein encapsulated, the degradation behaviors of the fiber matrices were correlated with the release rate and the effective lifetime of the drug release. The core–sheath‐structured ultrafine fibers could protect the structural integrity and bioactivity of encapsulated lysozyme, and an increase in the protective effect was demonstrated for fibers prepared from PELA matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
聚乙二醇-b-聚乳酸的合成及其电纺形成超细纤维研究   总被引:2,自引:2,他引:0  
为了提高聚乳酸的亲水性,以辛酸亚锡为催化剂、聚乙二醇单甲醚(mPEG)为大分子引发剂进行丙交酯(LLA)开环聚合,合成聚乙二醇-b-聚乳酸两嵌段共聚物(PELA).以红外光谱1、H核磁共振谱、接触角测试、差热扫描量热分析等方法对PELA的结构及性能进行表征.结果表明,通过调控mPEG与LLA的投料比可以控制PELA的相对分子质量,而随着mPEG组分含量或链长增加,共聚物亲水性增强,但其Tg、Tcc、Tm有所降低.由普通电纺制备PELA超细纤维,并分别由乳液电纺和同轴电纺得到以水溶性聚氧化乙烯(PEO)为芯、PELA为壳的芯/壳结构复合超细纤维(E-PEO/PELA和C-PEO/PELA).扫描电镜和透射电镜结果表明,PELA、E-PEO/PELA和C-PEO/PELA超细纤维形貌良好.随着PELA中mPEG含量的增加,电纺PELA纤维膜的吸水率增强,而由乳液电纺和同轴电纺制备的PEO/PELA芯/壳结构超细纤维膜,亲水性均好于PELA超细纤维膜.  相似文献   

5.
PolyDL-lactide (PDLLA) and the block copolymer, polyDL-lactide-b-poly(ethylene glycol)-b-polyDL-lactide (PELA) were used as the microsphere matrix to encapsulate plasmid DNA. The PDLLA, PELA, pBR322-1oaded PDLLA and pBR322-1oaded PELA microspheres were prepared by solvent extraction method based on the formation of multiple w1/o/w2 emulsion. The microspheres were characterized by surface morphology, mean particle size, particle size distribution and loading efficiency. The integrity of DNA molecules after being extracted from microspheres was determined by agarose gel electrophoresis. The result suggested that plasmid DNA molecules could retain their integrity after being encapsulated by PELA. The PELA microspheres could prevent plasmid DNA from being digested by DNase. The in vitro degradation and release profiles of plasmid DNA-loaded microspheres were measured in pH - 7.4 buffer solution at 37℃. The in vitro degradation profiles of the microspheres were evaluated by the deterioration in microspheres surface morphology, the molecular weight reduction of polymer, the mass loss of microspheres, the changes of pH values of degradation medium, and the changes of particle size. The in vitro release profiles of the microspheres were assessed by measurement of the amount of DNA presented in the release medium at determined intervals. The release profiles were correlation with the degradation profiles. The release of plasmid DNA from PELA microspheres showed a similar biphasic trend, that is, an initial burst release was followed by a slow, but sustained release.  相似文献   

6.
It is essential to individually tailor the biodegradability of electrospun fibers and their composites to meet the requirements of specific application. Electrospun poly(dl-lactide) (PDLLA) fibers grafted with functional groups were obtained to induce in situ mineralization of hydroxyapatite (HA), and HA/PDLLA composites were fabricated through hot-pressing of mineralized fibers after layer-by-layer deposition. The degradation behaviors during up to 1 year incubation were clarified for functionalized PDLLA fibers, mineralized HA/PDLLA fibers and hot-pressed composites. The carboxyl and amino groups of electrospun fibers indicated enhancement and alleviation of the autocatalysis effect on the polyester hydrolysis, respectively. The distribution of HA within fiber matrices led quick and strong water absorption, and caused neutralization of the weak acid environment and alleviation of the autocatalysis effect. Due to the location of mineralized HA on the surface of functionalized fibers, significant HA loss and preferential removal of amorphous and low-crystalline apatitic phase were determined during the degradation process. The hot-pressed composites indicated dense structure, small pore size and fusion on the fiber surface, leading significantly lower degradation rate than electrospun fibers and mineralized fibers. Higher degradation rate of matrix polymers and HA loss were shown for hot-pressed composites from mineralized fibers than those from blend electrospun HA/PDLLA fibers. The obtained results should provide solid basis for further applications of functionalized PDLLA fibers, mineralized fibers and fibrous composites in biomedical areas.  相似文献   

7.
In the paper, we successfully prepared spider silk fibroins (Ss)/poly( d, l-lactide) (PDLLA) composite fibrous nonwoven mats for the first time to the best of our knowledge. The morphology of the fibers was observed by a scanning electron microscope (SEM) and transmission electron microscope (TEM). The secondary structure change of the spidroin before and after electrospinning was characterized using Fourier transform infrared spectroscopy (FT-IR). Herein, a qualitative analysis of the conformational changes of the silk protein was performed by analyzing the FT-IR second-derivative spectra, from which quantitative information was obtained via the deconvolution of the amide I band. A mechanical test was carried out to investigate the tensile strength and the elongation at break. A water contact angle (CA) measurement was also performed to characterize surface properties of the fibers. The cytotoxicity of electrospun PDLLA and Ss-PDLLA nonwoven fibrous mats was evaluated based on a CCL 81(Vero) cells proliferation study. The results showed that the hydrophilic and mechanical property of the composite fiber were improved by introducing spidroin.  相似文献   

8.
Poly(?-caprolactone) (PCL) has been extensively studied for biomedical use due to its outstanding biocompatibility. Well-defined random and block copolymers based on PCL such as poly(?-caprolactone-r-2,2-dimethyltrimethylene carbonate) (PCD), poly[(?-caprolactone-r-2,2-dimethyltrimethylene carbonate)-b-PEG-b-(?-caprolactone-r-2,2-dimethyltrimethylene carbonate)] (PECD) and poly[MPEG-b-(?-caprolactone-r-2,2-dimethyltrimethylene carbonate)] (MPECD) containing 5.0-8.5 mol% 2,2-dimethyltrimethylene carbonate (DTC) and 15.9-18.3 mol% polyethylene glycol (PEG) or polyethylene glycol monomethyl ether (MPEG) have been synthesized by using lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) as catalyst. Their crystallization properties, thermal behaviors, hydrophilicities and degradation properties depend on the tunable microstructures and morphologies. It is found for the first time that porcine pancreatic lipase (PP lipase) can effectively catalyze the degradation of PCD electrospun mats (EMs) with 92.0% weight loss within 7 days while it shows no detectable effect on PCL EMs. Surface erosion mechanism is proposed in the enzymatic degradation systems, and the high proportion of amorphous domain of PCD contributes to its fast degradation rate according to the degradation product analyses. The enzymatic degradation rates of PCD EMs with porous structures and huge surface areas are higher than those of compression molding films (CMFs). Introducing PEG segment improves the hydrophilicity of PCD but decreases the degradation rate. A PEG segment enrichment process on the surface is addressed, which prevents the contact of PP lipase with PCD segments in the PEG-involved electrospun fiber. PECD and MPECD exhibit different mechanical strengths and contact angles, but similar degradation profiles. This study provides a practical example for tunable biodegradation of polyesters by designing the materials' bulk structures and/or surface morphologies.  相似文献   

9.
<正>Poly(α-hydroxy octanoic acid) was first used as an additive for the preparation of electrospun ultra-fine fibers of poly(ethylene glycol)-b-poly(L-lactide)(PEG-PLLA).Ibuprofen was loaded in the electrospun ultra-fine fibers.The results from environmental scanning electron microscopy(ESEM),wide angle X-ray diffraction(WAXD) and differential scanning calorimetry(DSC) demonstrated that ibuprofen could be perfectly entrapped in the fibers electrospun from PEG-PLLA usingα-hydroxy octanoic acid or PEG-b-poly(α-hydroxy octanoic acid)(PEG-PHOA) as additives.Compared with electrospun PEG-PLLA fibers which entrapped 20 wt%ibuprofen,the PEG-PLLA electrospun fibers containing PEG-PHOA exhibited integral and robust after 1 week incubated in 37℃,pH 7.4 phosphate buffer solution with 10μg/mL proteinase K.Compared with electrospun fibers without PEG-PHOA,the concentration of proteinase K in release media had less effect on the release rate of ibuprofen.An unique release profile was found from PEG-PLLA fiber after the incorporation of PEG-PHOA. Enzyme degradation experiments demonstrated that PEG-PHOA but notα-hydroxy octanoic acid monomer was the crucial factor for integrity maintenance of the electrospun fibers,which may be due to the enzyme degradation tolerance property of the PEG-PHOA polymer additive.  相似文献   

10.
Yang Y  Jia W  Qi X  Yang C  Liu L  Zhang Z  Ma J  Zhou S  Li X 《Macromolecular bioscience》2004,4(12):1113-1117
This study investigated two new biodegradable polymers as gene controlled-released coatings for gene transfer. Poly(ethylene glycol)-co-poly(D,L-lactic acid) (PELA) and poly(ethylene glycol)-co-poly(lactic acid)-co-poly(glycolic acid) random copolymer (PELGA) were synthesized and used as microspheres matrices with encapsulated plasmid pCH110. The plasmid loading efficiency, cytotoxicity, transfection efficiency and in vitro degradation and release profiles of microsphere complexes were evaluated in details. The biodegradable polymers showed high DNA loading efficiency and low cytotoxicity as gene controlled-released coatings, and the poly(ethylene glycol) (PEG) contents of polymer matrices influenced the diameter, loading efficiency and transfection efficiency of plasmid DNA within the microspheres. The average diameters of PELA and PELGA microspheres were between 0.5 and 1.5 microm, and the plasmid loading efficiency was 62 and 73% for PELA and PELGA microspheres with 10% PEG content, respectively. In vitro testing showed a gradual release profile of DNA from polymeric matrices. The polymers/DNA microspheres had high transfection efficiency and early gene expression and maintenance of gene expression level for up to 96 h, although transfection efficiency were slightly lower than that of liposome in the initial 24 h. The biodegradable polymeric materials possess potential superiority as gene carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号