首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
杨传钰  郭敏  张艳君  王新东  张梅  王习东 《化学学报》2007,65(15):1427-1431
采用恒电位电沉积方法, 在未经修饰的ITO导电玻璃基底上通过控制实验条件制备出不同形貌的纳米ZnO结构, 而在经过ZnO纳米粒子膜修饰后的ITO导电玻璃基底上, 制备出透明、高取向、粒径小于30 nm的ZnO纳米棒阵列. 用扫描电子显微镜(SEM)、X射线衍射(XRD)以及透射光谱对制备出的ZnO纳米棒阵列的结构、形貌和透明性进行了表征. 测试结果表明, ZnO纳米棒阵列的平均直径为21 nm, 粒径分布窄, 约18~25 nm, 择优生长取向为[001]方向, 垂直于基底生长. 当入射光波长大于400 nm时, ZnO纳米棒阵列的透光率大于95%.  相似文献   

2.
采用微乳液-水热辅助法合成了尺寸、形貌均匀的ZnO纳米棒,其长度约400 nm,直径约50 nm。基于将纳米ZnO与块体ZnO的标准摩尔生成焓相关联,依据热力学势函数法设计热化学循环,获得了纳米ZnO与块体ZnO标准摩尔生成焓的关系。结合微量热技术求算出了下所制备的ZnO纳米棒在298.15 K下的标准摩尔生成焓为(-331.70±0.42)kJ.mol-1。  相似文献   

3.
Co掺杂ZnO纳米棒的水热法制备及其光致发光性能   总被引:7,自引:0,他引:7  
以Zn(NO3)2·6H2O 和Co(NO3)2·6H2O为原料, 通过水热法在较低温度下制备了纯ZnO和Co掺杂的ZnO(ZnO:Co)纳米棒. 利用XRD、EDS、TEM和HRTEM对样品进行了表征, 结合光致发光(PL)谱研究了样品的PL性能. 结果表明, 水热法制备纯ZnO和ZnO:Co纳米棒均具有较好的结晶度. Co2+是以替代的形式进入ZnO晶格, 掺入量为2%(原子分数)左右. 纯的ZnO纳米棒平均直径约为20 nm, 平均长度约为180 nm; 掺杂样品的平均直径值约为15 nm, 平均长度约为200 nm左右; Co掺杂轻微地影响ZnO纳米棒的生长. 另外, Co掺杂能够调整ZnO纳米棒的能带结构、提高表面态含量, 进而使得ZnO:Co纳米棒的紫外发光峰位红移, 可见光发光能力增强.  相似文献   

4.
采用恒电位阴极还原法在金电极表面一步修饰ZnO纳米棒, 制备成ZnO纳米棒修饰电极. 扫描电子显微镜(SEM)和X射线衍射(XRD)结果显示制得的ZnO为直径约100 nm的六棱柱状纤锌矿晶体纳米棒. 使用ZnO纳米棒修饰的金电极研究细胞色素c的直接电化学行为, 结果表明: ZnO纳米棒修饰的金电极能有效探测到细胞色素c的铁卟啉辅基在不同价态下的电化学行为; 细胞色素c吸附后, ZnO纳米棒修饰的金电极对过氧化氢的电流响应呈现良好的线性关系.  相似文献   

5.
微波法合成氧化锌纳米棒   总被引:1,自引:0,他引:1  
以氯化锌为锌源,碳酸钠为矿化剂,水为溶剂,微波辐照10 min制备了结晶性好的半导体ZnO纳米棒.经XRD,FESEM,TEM和SAED表征,ZnO纳米棒直径为40 nm~80 nm,长度为300 nm~500 nm,沿着c轴择优取向生长.对ZnO纳米棒生长机制进行了分析.  相似文献   

6.
在80℃水浴下,采用简易的湿化学法在不导电玻璃基底上制备了ZnO纳米棒阵列,利用X射线衍射仪(XRD)和场发射扫描电镜(FE-SEM)对样品的结构形貌进行了表征.结果表明,晶化30 min所得产物为六方纤锌矿相的ZnO纳米棒,直径大约为80~90 nm.为了分析不同的低温退火温度和退火气氛对其光致发光性能的影响,研究了ZnO纳米棒薄膜在不同的后处理条件下的光致发光谱(PL).实验结果表明,在O2气氛下于450℃退火1 h后,ZnO纳米棒薄膜的红光发射(约650 nm)强度相对在空气和5%H2/95%N2气氛下退火的样品变得更强,而且该样品的激发波长范围(200~370 nm)与近紫外发光二极管(LEDs)的发射波长范围(350~420 nm)匹配得很好.  相似文献   

7.
水热法制备ZnO纳米棒及其光催化性能研究   总被引:2,自引:2,他引:0  
以Zn(acac)2.H2O为单源前驱体,采用水热法在140℃条件下制备了ZnO纳米棒,并用XRD、SEM、TEM等测试手段对其进行了表征。利用紫外—可见分光光度计测试了其光吸收性能,发现ZnO纳米棒对200-400 nm波长范围的光有很强的吸收性,在可见光范围内,也有较强的吸收。以ZnO纳米棒为光催化剂对有机染料酸性红4B进行了光催化降解实验,并研究了光源、污水浓度对ZnO纳米棒光催化氧化效果的影响。研究结果表明,在日光照射180 min后,对酸性红4B的降解率接近100%。  相似文献   

8.
以十二烷基硫酸钠(SDS)的水溶液为造孔剂,用溶剂热压方法制备了大孔径的ZnO多孔纳米块体,并进一步考察了添加聚乙二醇400(PEG-400)对样品中孔道的影响. 实验发现,向十二烷基硫酸钠(SDS)的水溶液中加入聚乙二醇400组成共溶剂后, 制备的ZnO多孔纳米块体的孔径大幅度减小,比表面积和孔隙率也明显降低,但孔径的均匀性显著提高.  相似文献   

9.
采用两步溶液法在陶瓷管上原位生长了ZnO纳米棒阵列,然后以ZnO纳米棒为载体,通过水热法在其表面负载α-Fe2O3纳米粒子,生成异质α-Fe2O3/ZnO复合纳米材料。 α-Fe2O3/ZnO纳米棒直径30~80 nm,长1 μm左右,交叉排列形成纳米棒阵列,α-Fe2O3纳米粒子粒径约10 nm,均匀分布在ZnO纳米棒表面。 将纯ZnO和α-Fe2O3/ZnO纳米棒阵列制成气敏元件,测试并对比了2种气敏元件的气敏性能,揭示其气敏机理。 结果表明:α-Fe2O3纳米粒子的复合显著提高了ZnO纳米棒阵列对乙醇气体的灵敏度和选择性,在工作温度370 ℃时,对100 μL/L乙醇气体的响应值为85.4,是同条件下ZnO器件对乙醇响应值(9.4)的9.1倍,响应时间7 s,最低检出限为0.01 μL/L。 相关研究可以应用于痕量乙醇的快速、高灵敏度和高选择性检测。  相似文献   

10.
醇热法制备ZnO纳米棒及其发光性能   总被引:2,自引:0,他引:2  
在常压条件下,以油酸为分散剂一步反应醇热法制备ZnO纳米棒,利用XRD、SEM、TEM、HRTEM和FTIR等分析技术对产物进行了表征,对产物退火前后的光致发光性能进行了测试,并对ZnO纳米棒生长机理进行讨论. 结果表明,ZnO纳米棒沿[001]方向择优取向生长,直径为10~15 nm,长度为150~200 nm,油酸与ZnO表面Zn(Ⅱ)以螯合键形式相结合,具有良好的近紫外发光性能. 随着退火温度升高,产物深能级发光强度先降低后增加.  相似文献   

11.
Low-temperature growth of ZnO nanorods by chemical bath deposition   总被引:1,自引:0,他引:1  
Aligned ZnO nanorod arrays were synthesized using a chemical bath deposition method at normal atmospheric pressure without any metal catalyst. A simple two-step process was developed for growing ZnO nanorods on a PET substrate at 90-95 degrees C. The ZnO seed precursor was prepared by a sol-gel reaction. ZnO nanorod arrays were fabricated on ZnO-seed-coated substrate. The ZnO seeds were indispensable for the aligned growth of ZnO nanorods. The ZnO nanorods had a length of 400-500 nm and a diameter of 25-50 nm. HR-TEM and XRD analysis confirmed that the ZnO nanorod is a single crystal with a wurtzite structure and its growth direction is [0001] (the c-axis). Photoluminescence measurements of ZnO nanorods revealed an intense ultraviolet peak at 378.3 nm (3.27 eV) at room temperature.  相似文献   

12.
近年来.一维纳米结构如纳米线、纳米棒、纳米带等.由于其新颖的物理化学性质及其在光学或电学器件上的广泛应用前景.已成为研究开发的热点。特别是氧化锌(ZnO)这种宽禁带(3.37eV)、高激子束缚能(60meV)的功能性半导体材料。基于它在光电子器件、太阳能电池、传感器、二极管、场发射显示器等领域潜在的重要应用价值,各国科学工作者都给予极大的研究热情.开发出了许多合成方案制备一维纳米ZnO结构,如水热法,模板法同,微乳液法阐,CVD法,热蒸发法,MOVPE法,电化学沉积法等。  相似文献   

13.
硫化铜纳米棒的低热固相合成及其光学性能   总被引:7,自引:0,他引:7  
在表面活性剂PEG-400存在的条件下.以醋酸铜和硫代乙酰胺为原料,利用低热固相化学反应,一步制备出分散均匀的硫化铜纳米棒.X射线粉末衍射和能量散射X射线能谱分析证明.产物为纯六角相的硫化铜.透射电镜和扫描电镜形貌分析表明,产物为棒状,直径为80~100nm,长度为200~500nm.紫外一可见光谱和光致发光光谱表明,硫化铜纳米棒的紫外和荧光最大吸收和发射波长与常规硫化铜相比均发生了明显的蓝移,表明所制备的硫化铜纳米棒具有良好的光学性质.  相似文献   

14.
Self-assembled unusual ZnO ellipsoids have been grown by a facile low-temperature (60 degrees C) solution process on a large scale. FESEM and TEM reveal that these ellipsoids have an average horizontal axis of 1.5 microm and a longitudinal axis of 0.6 microm. Experimental results obtained from the early growth stage demonstrate that the ZnO ellipsoidal structures are single crystals and formed from direct "oriented attachment" of two types of building blocks, that is, nanorods and nanoparticles. It is further found that the existence of poly(ethylene glycol) (PEG-10 000) is vital to the formation of the complex microparticles. Raman spectrum, room-temperature photoluminescence, and UV-vis absorption spectra are also discussed. This work presents a simple and effective route for large-scale fabrication of single-crystal ZnO ellipsoids with micrometer-scale sizes and 3D self-assembled structures.  相似文献   

15.
水热法制备高度取向的氧化锌纳米棒阵列   总被引:17,自引:0,他引:17  
氧化锌的激子结合能(60meV)及光增益系数(300cm^-1)比GaN的(25meV,100cm^-1)还高,这一特点使它成为紫外半导体激光发射材料的研究热点。最近,Yang等成功地观测到规则的ZnO纳米线阵列的激光发射现象,更加激起了人们合成一维高度有序ZnO纳米结构的热情,由于一维ZnO  相似文献   

16.
微波固相合成氧化锌纳米棒   总被引:4,自引:0,他引:4  
刘劲松  曹洁明  李子全  柯行飞 《化学学报》2007,65(15):1476-1480
通过前驱体的微波固相热分解法快速合成了氧化锌纳米棒, 其直径在60~385 nm之间, 长可达数微米. 前驱体则通过一步室温固相反应制备. 用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散X射线分析(EDX)和透射电子显微镜(TEM)对产物的结构和形貌进行了表征. 同时, 对氧化锌纳米棒的光致发光(PL)性能作了测试, 结果表明在355 nm处有一个明显的近带隙发射峰. 另外, 对比实验表明, 微波辐射在氧化锌纳米棒的形成过程中起了关键性作用, 并对其形成机理进行了初步探讨.  相似文献   

17.
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.  相似文献   

18.
We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号