首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Activated carbon from lemon wood (AC) and ZnO nanoparticles loaded on activated carbon (ZnO‐NP‐AC) were prepared and their efficiency for effective acid yellow 199 (AY 199) removal under various operational conditions was investigated. The dependence of removal efficiency on variables such as AY 199 concentration, amount of adsorbent and contact time was optimized using response surface methodology and Design‐Expert. ZnO nanoparticles and ZnO‐NP‐AC were studied using various techniques such as scanning electron microscopy, X‐ray diffraction and energy‐dispersive X‐ray analysis. The optimum pH was studied using one‐at‐a‐time method to achieve maximum dye removal percentage. Small amounts of the proposed adsorbents (0.025 and 0.025 g) were sufficient for successful removal of AY 199 in short times (4.0 and 4.0 min) with high adsorption capacity (85.51 and 116.29 mg g?1 for AC and ZnO‐NPs‐AC, respectively). Fitting the empirical equilibrium data to several conventional isotherm models at optimum conditions indicated the appropriateness of the Langmuir model with high correlation coefficient (0.999 and 0.978 for AC and ZnO‐NPs‐AC, respectively) for representation and explanation of experimental data. Kinetics evaluation of experiments at various time intervals revealed that adsorption processes can be well predicted and fitted by pseudo‐second‐order and Elovich models. This study revealed that the combination of ZnO nanoparticles and AC following simple loading led to significant improvement in the removal process in short adsorption time which was enhanced by mixing the media via sonication.  相似文献   

2.
ZnO nanostructures have been electrochemically synthesized on three-dimensional, interconnected, and porous carbon nanofiber Buckypaper substrates. Using potentiostatic deposition, wurtzite ZnO with controlled microstructure and morphology has been deposited. While all ZnO deposits exhibit a band gap value of around 3.2 eV, impurity states determined by photoluminescence (PL) measurements show strong deposition potential influences. Both the green and red emissions corresponding to respective oxygen vacancies and oxygen rich impurity states can be identified. Thermal annealing can greatly reduce oxygen vacancy concentration but has limited effects on the oxygen rich defects. This study suggests a cost-effective and high-throughput approach in deposition of ZnO nanostructures suitable for photovoltaic applications.  相似文献   

3.
Multiwalled carbon nanotubes (MWNTs) have been successfully modified with ZnO nanostructures by zinc-ammonitum complex ion covalently attached to the MWNTs through the C-N bonds. Flower-like ZnO on the tips of MWNTs and ZnO nanoparticles on the surface of MWNTs have been obtained, respectively, via adjusting the reaction time. The modified MWNTs have been characterized with X-ray diffraction, scanning electron and transmission electron microscopy. A growth mechanism has been proposed in which the soaking time plays a key role in controlling the size, morphology, and site of ZnO nanostructures. Photoluminescence properties of the as-synthesized products have also been investigated.  相似文献   

4.
The proposed research, presents the synthesis, characterization, and photocatalytic accomplishment of ZnO nanoplate (ZnOs) modified with activated carbon derived from Konar bark. The obtained nanocomposite (photocatalyst) was characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). First, the ZnO photocatalyst and activated carbon (AC) were prepared separately; then, the ZnO photocatalyst was modified with activated carbon. Various parameters namely pH, degradation time, and photocatalyst dose were optimized and studied in multivariate method by design expert7 software. The synergic efficiency of ZnO‐AC (adsorbent/photocatalyst) exhibited a good rate of ciprofloxacin (CIP) removal under visible irradiation. In addition, first pseudo order kinetic and isotherms equations were calculated. Moreover, the identification of degradation products was performed by ultra performance liquid chromatography‐tandem mass spectrometer (UPLC‐MS/MS). It is for the first time that a ZnO photocatalyst modified with activated carbon (ZnO‐AC) applied for CIP degradation.  相似文献   

5.
Nanoporous zinc oxide (ZnO) is prepared by a hydrothermal method followed by thermal decomposition for electrocatalytic reduction of CO2. In situ X-ray absorption spectroscopy results indicate that ZnO is reduced to Zn under the electrolysis conditions for catalyzing CO2 electroreduction. The reduced nanoporous ZnO exhibits obviously higher CO Faradaic efficiency and current density than commercial Zn foil with a maximum CO Faradaic efficiency of 92.0%, suggesting that the nanoporous structure facilitates electrocatalytic reduction of CO2 over reduced nanoporous ZnO, probably due to increased surface area and more coordination unsaturated surface atoms.  相似文献   

6.
采用水热法合成具有核壳结构的片花状ZnO@碳球系列复合物(ZnO@C)。利用X射线衍射(XRD),扫描电子显微镜(SEM),X射线光电子能谱(XPS),红外光谱(FTIR),紫外可见漫反射光谱(UV-Vis DRS),荧光光谱(PL)以及N2吸附-脱附等技术对所合成样品进行表征,结果表明,碳球被ZnO纳米片包裹形成具有核壳结构的片花状复合物,碳球的存在增加了ZnO对可见光的吸收,有效抑制了光生电子空穴对的复合。在模拟太阳光下,对活性染料GR黑及甲硝唑的光催化降解测试结果显示,ZnO@C系列复合物的光催化性能均高于纯ZnO,其中ZnO@C-2样品表现出最好的光催化性能,其光催化降解GR黑和甲硝唑的速率分别为纯ZnO的4.2倍和2.1倍。  相似文献   

7.
半导体光催化是一种理想的太阳能化学转化绿色技术,可以实现水分解制氢和CO2光还原制备碳氢化合物燃料.氧化锌 (ZnO) 作为一种直接带隙半导体材料,一方面具有性能优异、价格低廉、易制备等优点; 另一方面因光腐蚀而不稳定,大大限制了该材料的实际应用.本文提出了一种简单易行的类石墨碳修饰方法,可以有效提高 ZnO 用于CO2光还原的光催化活性和稳定性.首先采用水热法在金属锌片基底上生长 ZnO 纳米棒阵列 (ZnO-NRA),然后通过葡萄糖水热法进行不同含量的类石墨碳 (C-x) 修饰,形成 ZnO-NRA/C-x 纳米复合结构,同步实现碳包覆和碳掺杂.X 射线衍射结果表明,ZnO 纳米棒及ZnO-NRA/C-x 纳米复合结构都具有良好的纤锌矿型 (Wurtzite) 结构; 而拉曼散射则清楚地证实了类石墨碳的存在.扫描电子显微观察显示,生长的 ZnO 纳米棒长度大约 2-5 μm,直径为 400-700 nm,沿方向[0001]生长,端部由六个规则的 (103)晶面组成,进一步直观佐证了 ZnO 的典型纤锌矿型结构特征.透射电子显微分析结果表明,ZnO-NRA/C-x 纳米复合结构中类石墨碳包覆层厚度大约为 8 nm.ZnO-NRA/C-x 纳米复合结构的 X 射线光电子谱分析结果验证了 C-C,C-O 和 C=O键的存在与碳的包覆层相对应; 而 C-O-Zn键的出现则是由于碳在 ZnO 中掺杂所引起.从紫外-可见吸收谱上可观察到ZnO 的典型吸收带边位置约为 385 nm,而碳的包覆和掺杂导致 ZnO-NRA/C-x 纳米复合结构的吸收带边发生红移,并且吸收背底明显提高.电化学阻抗谱测试结果清楚地显示,ZnO-NRA/C-x 纳米复合结构比单纯 ZnO-NRA 的电化学阻抗明显降低,说明类石墨碳包覆层大幅度提高了电导性能,从而有利于光生载流子的分离和传输.荧光分析结果也表明,与单纯的 ZnO-NRA 相比,ZnO-NRA/C-x 纳米复合结构的荧光强度大幅度下降,进一步证实了 ZnO-NRA/C-x 纳米复合结构比单纯的 ZnO-NRA更有利于光生载流子的分离和传输.光电化学测试结果表明,ZnO-NRA/C-x 纳米复合结构的瞬态光电流 4 倍于单纯的ZnO-NRA,而 CO2 光还原性能测试也得到一致的结果.长时间多循环 CO2 光还原实验证实,ZnO-NRA/C-x 纳米复合结构具有稳定的光催化活性和极好的光稳定性.综上,我们利用一种简单易行的水热法进行类石墨碳修饰,成功开发了 ZnO-NRA/C-x 纳米复合结构,该结构因其优异的光生电子和空穴的分离和迁移性能,从而具有显著提升的CO2光还原活性和光稳定性.本工作证明,类石墨碳修饰是一种可以广泛借鉴的有效提升半导体材料光催化活性和光稳定性的可行方法.  相似文献   

8.
Novel ZnO/N‐doped helical carbon nanotubes (ZnO/N‐HCNTs) composites were successfully synthesized via a facile chemical precipitation approach at room temperature. The sample was well characterized by X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The photocatalytic activity was evaluated in the degradation of methylene blue (MB) aqueous solution under UV light irradiation. It is found that ZnO nanoparticles were highly and uniformly anchored on the surface and inner tubes of the N‐HCNTs with size of about 5 nm, and significantly enhanced the photocatalytic activity compared to pure ZnO. The enhanced photocatalytic activity of ZnO/N‐HCNTs composites can be ascribed to the integrative synergistic effect of effective interfacial hybridization between N‐HCNTs and ZnO nanoparticles and the prolonged lifetime of photogenerated electron–hole pairs. Moreover, the ZnO/N‐HCNTs could be easily recycled without any obvious decrease in photocatalytic activity and could be promote their application in the area of environmental remediation.  相似文献   

9.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

10.
We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2).  相似文献   

11.
A voltammetric sensor is described for the determination the antibiotic sulfamethoxazole (SMZ). It is based on the use of a glassy carbon electrode (GCE) modified with a nanocomposite prepared from graphitic carbon nitride and zinc oxide (g-C3N4/ZnO). The nanorod-like ZnO nanostructure were synthesized sonochemically. The g-C3N4/ZnO nanocomposite was then prepared by mixing g-C3N4 with ZnO, followed by ultrasonication. The morphology and structure of the nanocomposite were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy and transmission electron microscopy. Under the optimal conditions, the response of the electrode, typically measured between 0.8 and 0.9 V (vs. Ag/AgCl), increases linearly in the 20 nM to 1.1 mM SMZ concentration range, and the lower detection limit is 6.6 nM. This is better than that of many previously reported sensors for SMZ. The modified electrode is highly selective, well reproducible and maintains its activity for at least 4 weeks. It was applied to the determination of SMZ in spiked human blood serum samples in with satisfactory results.
Graphical abstract Schematic presentation of the voltammetric sensor for sulfamethoxazole. It consists of a glassy carbon electrode modified with a nanocomposite prepared from graphitic carbon nitride (g-C3N4/ZnO) that was supported with zinc oxide nanorods.
  相似文献   

12.
通过静电纺丝技术合成碳纳米纤维,以循环伏安法在此碳纤维上电聚合乙酸锌制备复合纳米材料作为一种新型的电化学增敏剂,用于修饰玻碳电极,开发了一种基于碳纤维和氧化锌复合材料的新型电化学传感器(ZnO/CNF/GCE)。使用循环伏安法、差分脉冲伏安法等进行电化学催化性能的研究,并优化实验条件。结果表明,与裸电极相比,在pH 5.5磷酸盐缓冲溶液中,ZnO/CNF/GCE修饰电极能使氧氟沙星的峰电流明显提升,线性范围1~200μmol/L,检测限为0.33μmol/L。该ZnO/CNF/GCE修饰电极已用于氧氟沙星滴耳液中氧氟沙星的含量测定。  相似文献   

13.
A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite film modified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrode surface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as an indicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the transgenic corn, with a detection limit of 2.8× 10^-12 mol/L of target sequence.  相似文献   

14.
We controlled the morphologies of zinc oxide (ZnO) nanostructures on single-walled carbon nanotube electrodes by an electrochemical deposition method and investigated the dependence of the electrocatalytic characteristics toward hydrazine on the different morphologies. ZnO nanorods provided high electrocatalytic activity with unique electrochemical behaviours, associated with the H(+) ion generated by the electro-oxidation of hydrazine.  相似文献   

15.
The effect of co-catalyst (ZnO or ZrO2) has been tested for hydrogenation of CO2 on CuO/TiO2 and CuO/Al2O3. CuO−ZnO/TiO2 catalyst showed the highest activity for methanol synthesis. Kinetic parameters were also determined.  相似文献   

16.
In this work we describe the first report for the determination of promazine using a nanostructuremodified ionic liquid carbon paste electrode in aqueous solutions. To achieve this goal, a novel modified carbon paste electrode using ZnO nanoparticles and 1-methyl-3-butylimidazolium bromide as a binder(ZnO/NPs/ILs/CPE) was fabricated. The oxidation peak potential of promazine at the surface of the ZnO/NPs/ILs/CPE appeared at 685 m V, which was about 65 m V lower than the oxidation potential at the surface of CPE under similar conditions. Also, the peak current was increased to about 4.0 times higher at the surface of ZnO/NPs/ILs/CPE compared to that of CPE. The linear response range and detection limit were found to be 0.08–450 and 0.04 mmol/L, respectively. The modified electrode was successfully used for the determination of promazine in real samples with satisfactory results.  相似文献   

17.
Research on Chemical Intermediates - ZnO was grown on the surface of activated carbon fibre (ACF) by a hydrothermal method to form a recyclable photocatalyst. With an increase in hydrothermal time...  相似文献   

18.
We report the formation of a stable superhydrophobic surface via aligned carbon nanotubes (CNTs) coated with a zinc oxide (ZnO) thin film. The CNT template was synthesized by chemical vapor deposition on an Fe-N catalyst layer. The ZnO film, with a low surface energy, was deposited on the CNT template by the filtered cathodic vacuum arc technique. Contact angle measurement reveals that the surface of the ZnO-coated CNTs is superhydrophobic with water contact angle of 159 degrees . Unlike the uncoated CNTs surface, the ZnO-coated CNTs surface shows no sign of water seepage even after a prolonged period of time. The wettability of the surface can be reversibly changed from superhydrophobicity to hydrophilicity by alternation of ultraviolet (UV) irradiation and dark storage.  相似文献   

19.
This paper focuses on the development of an effective methodology to obtain the optimum ultrasonic‐assisted removal of a dye, safranin O (SO), under optimum conditions that maximize the removal percentage, using ZnO nanorod‐loaded activated carbon (ZnO‐NRs‐AC) in aqueous solution. Central composite design coupled with genetic algorithm was used for parameter optimization. The effects of variables such as pH, initial dye concentration, mass of ZnO‐NRs‐AC and sonication time were studied. The interactive and main effects of these variables were evaluated using analysis of variance. The structural and physicochemical properties of the ZnO‐NRs‐AC adsorbent were investigated using field emission scanning electron microscopy and X‐ray diffraction. Adsorption equilibrium data were fitted well with the Langmuir isotherm and the maximum monolayer capacity was found to be 32.06 mg g?1. Studies of the adsorption kinetics of the SO dye showed a rapid sorption dynamic with a pseudo‐second‐order kinetic model, suggesting a chemisorption mechanism.  相似文献   

20.
Highly porous materials containing zinc oxide were prepared form modified pine wood. The growth dynamics of zinc oxide microcrystallites in the course of carbonization of pine sawdust mixed with ZnCl2 was studied. The hexagonal wurtzite-type ZnO phase is formed at 400°С and is broken down at approximately 800°С. The synthesized composite material has a high specific surface area, up to 1900 m2 g–1. The relationships of the porous structure formation in the composite in relation to the temperature and subsequent treatment with water were revealed. Opening of the porous structure of the composite in the course of carbonization of modified pine sawdust is associated with the formation of crystal-like phases of carbon and ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号