首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The adsorption of the anionic dye congo-red (CR) by Na-, Cs-, Mg-, Al- and Fe-montmorillonite was studied by simultaneous DTA-TG. Thermal analysis curves of adsorbed CR were compared with those of neat CR. The oxidation of neat CR is completed below 570°C. Thermal analysis curves of adsorbed CR show three regions representing dehydration of the clay, oxidation of the organic dye and dehydroxylation of the clay together with the oxidation of residual organic matter. The oxidation of the dye begins at about 250°C with the transformation of organic H atoms into water and carbon into charcoal. Two types of charcoal are obtained, low-temperature and high-temperature stable charcoal. The former gives rise to an exothermic peak in the second region of the thermal analysis and the latter in the third region. The exchangeable metallic cation determines the ratio between the low-temperature and high-temperature stable charcoal, which is formed. With increasing acidity of the exchangeable metallic cation higher amounts of high-temperature stable charcoal are obtained. It was suggested that aromatic compounds p bonded to the oxygen plane of the clay framework are converted into charcoal, which is burnt at about 550-700°C. With increasing surface acidity of the clay more species of CR are protonated. Only protonated dye species can form p bonds with oxygen plane and are converted to high-temperature stable charcoal during the thermal analysis. The thermal behavior of the dye complex of Cu-montmorillonite is different probably due to the catalytic effect of Cu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Adsorption of phenanthrene on organoclays from distilled and saline water   总被引:10,自引:0,他引:10  
Isotherms of phenanthrene adsorption on different organoclay complexes were obtained using the HPLC technique to understand the adsorption behavior and to characterize the effect of sodium chloride (NaCl) on the adsorption. The adsorbed amounts of phenanthrene on montmorillonite exchanged by organic cations such as tetraheptylammonium, benzyltrimethylammonium, hexadecyltrimethylammonium, or tetraphenylphosphonium were several times higher than those obtained using montmorillonite clay without surface modification. At the same equilibrium concentration, the adsorbed amount of phenanthrene is higher on clay modified with benzyltrimethylammonium than on clay modified with hexadecyltrimethylammonium or other cations. Adsorption of phenanthrene on clay modified with benzyltrimethylammonium increased dramatically as the concentration of NaCl increased up to 150 g/l in the aqueous solution. The shape of the curves obtained can be classified as S-type. The adsorption data obtained from salinity experiments support a mathematical model that links the Langmuir constant with the salinity constant. This model may be useful to predict the equilibrium concentration of a contaminant in saline solution. FTIR studies showed strong interactions between the aromatic rings of phenanthrene and the preadsorbed benzyltrimethylammonium on clay surfaces.  相似文献   

3.
The divalent organic cation, methyl green (MG), undergoes a slow transformation (6 h) to a monovalent cation, carbinol (MGOH(+)) upon dilution of its solution (10 mM), or in a buffer at neutral pH. Adsorption isotherms of MG on montmorillonite were determined by two procedures, both of which yield a final pH of suspensions between 7 to 7.4. When the amounts of MG in suspension were lower than the cation-exchange capacity (CEC) of the clay (0.8 mol(c)/kg clay), no measurable amount of MG remained in solution. The maximal amounts of MGOH(+) adsorbed were larger than those of MG(2+), being 1.15 and 0.75 mol MG/kg clay, respectively, corresponding to 140% of the CEC in the first case. On a charge basis the adsorption of added MG(2+) amounts to 185% of the CEC, which raises the possibility that a certain fraction of MG(2+) transformed into the monovalent form during the incubation period, since other divalent organic cations previously studied only adsorbed up to the CEC (paraquat), or slightly above it (diquat). Adsorption of MG on sepiolite (CEC=0.15 mol(c)/kg) further emphasizes the two patterns of its adsorption. The maximal adsorbed amounts of MG(2+) and MGOH(+) were 0.09 and 0.30 mol/kg clay, respectively. X-ray diffraction measurements gave lower values for the basal spacings for montmorillonite-MG(+) than for MGOH(+), suggesting that MG(2+) binds two clay platelets together, as in the case of other divalent cations. A competition for adsorption between MG and the monovalent organic cation, acriflavin (AF), gave lower adsorbed amounts of AF when competing with MG(+), which is interpreted to be due to the smaller basal spacing in this case, which partially inhibits the entry of AF molecules into the interlammelar space. Spectra of montmorillonite-MG particles in the visible range exhibited significant differences between clay-MG and clay-carbinol. Copyright 2000 Academic Press.  相似文献   

4.
The absorption, fluorescence excitation, and fluorescence emission spectra of water solutions of fluorescein dye with the addition of various amounts of a colloidal silver suspension have been measured in order to check if in such systems it is possible to distinguish the change in photonic mode density due to the metal presence from the other effects such as the influences of the microemulsion system on the spectral properties of the dye. It has been found that the presence of the silver colloid changes the concentrations of the various ionic forms of fluorescein, characterized by different yields of fluorescence. This effect is partially responsible for the change in the yield of the fluorescence emission observed at certain concentrations of the dye and the colloids. But even at the same concentration of various ionic forms of fluorescein (at the same pH of the dye solution and the dye-colloid mixture), at certain concentrations of fluorescein and the colloid, the yield of the dye fluorescence increases, which must be due to the interaction between the dye and the silver colloid. Because of the superposition of several processes influencing the dye yield of fluorescence, it is necessary to carefully establish the properties of the dye in a given environment, before considering its practical application as a marker of the metal presence. It is not excluded that similar complex effects could also occur in biological samples containing natural pigments and colloids of metals. Investigations of other dyes with other forms of metallic samples are in progress.  相似文献   

5.
Adsorption of a cationic dye, methylene blue (MB), on the surface of montmorillonite leads to the molecular aggregation of dye cations, reflected by significant changes of dye optical properties. Montmorillonite samples, saturated with various inorganic cations (mono-, bi-, and trivalent, including those of transition metals), were used. Influence of the exchangeable cations on the MB aggregation was tested. Various properties of cations were considered (charge, diameter, acidity, hydration energies). Both direct and potential indirect effects of the cations were taken into account, such as salting-out effect, influence of the ions on solvent polarity, influence on swelling, colloid properties of montmorillonite dispersions, cation hydration properties, hydrolysis, and interaction of the cations with the clay surface. The spectra of MB in dispersions of montmorillonite saturated with NH4+, K+, Rb+, and Cs+ were significantly different from those of other reaction systems. Direct association between large monovalent cations and basal oxygen atoms of silicate probably leads to a partial fixation of the cations, which affects the ion exchange reaction and dye aggregation. Thus, the presence of large monovalent cations leads to the formation of fewer ordered H-aggregates in favor of monomers and aggregates of lower size. In these cases, dye species absorbing light of low energies also appeared in significant amounts and were assigned to J-aggregates, characterized by a head-to-tail intermolecular association.  相似文献   

6.
Electroactive planar waveguide (EAPW) instrumentation was used to perform potential modulated absorbance (PMA) experiments at indium tin oxide (ITO) electrodes coated with 0-, 300-, 800-, and 1200-nm-thick SWy-1 montmorillonite clay. PMA experiments performed at low potential modulation monitor mass transport events within 100 nm of the ITO surface and, thus, when used in conjunction with cyclic voltammetry (CV), can elucidate charge transport mechanisms. The data show that at very thin films electron transfer is controlled by electron hopping (sensitive to the anion species in the electrolyte) in an adsorbed Ru(bpy)(3)(2+) layer. As the thickness of the clay film grows, electron transfer may become controlled by mass transfer of Ru(bpy)(3)(2+) within the clay film to and from the electrode surface, a mechanism that is affected by the swelling of the film. Film swelling is controlled by the cation of the electrolyte. Films loaded with Ru(bpy)(3)(2+) while being subjected to evanescent wave stimulation demonstrate a large hydrophobic layer. The growth of the hydrophobic layer is attributed to the formation of Ru(bpy)(3)(2+*), which has negative charge located at the periphery of the molecule enhancing clay/complex repulsion. The results suggest that the structure of the film and the mechanism of charge transport can be rationally controlled. Simultaneous measurements of the ingress of Ru(bpy)(3)(2+) into the clay film by CV and PMA provide a means to determine the diffusion coefficient of the complex.  相似文献   

7.
The molecular aggregation of oxazine 1 (Ox1) and oxazine 4 (Ox4) in reduced charge montmorillonite (RCM) colloids was investigated by absorption and fluorescence spectroscopies. The aggregation was significantly influenced by the structure of dye cations. Presence of four hydrophobic ethyl groups attached to the ammonium substituents in Ox1 cation prevented formation of closely packed sandwich-type assemblies (H-aggregates). Significant effect of the layer charge was observed for Ox4/RCMs dispersions. Large amounts of the Ox4 H-aggregates were formed in the systems with RCMs of the highest layer charge and reflected in quenched fluorescence. The presence of J-aggregates was proven by absorption spectra for the systems with Ox4 and low-charge RCMs. The flocculation of the lowest charge RCM colloids led to an extensive reduction of the luminescence. The trends and effects of the dye molecular structure and RCM properties are compared with the results previously published for other types of dyes.  相似文献   

8.
Montmorillonite was thermally treated at several temperatures to reduce the charge density of its layer surface. Absorption and fluorescence (steady-state and time-resolved) spectroscopies are now applied to study the adsorption of rhodamine 3B (R3B) laser dye in reduced charge montmorillonites (RCMs) in aqueous suspensions. The decrease in the charge density increases the intermolecular distance between adsorbed R3B molecules, reducing the tendency of the dye to self-associate. H-type and J-type aggregates of R3B in RCMs are spectroscopically characterized, the fluorescent J-aggregates being more extensively formed by decreasing the charge density. Both the reduction in the dye aggregation and the formation of J-type aggregates enhance the fluorescence efficiency of R3B dye adsorbed in montmorillonite particles. Absorption with linearly polarized light reveals that the H-aggregates are more disposed toward the perpendicular of the clay surface than the monomer and J-aggregates species.  相似文献   

9.
Ionic surface diffusitivity is important parameter for the electrostatic interaction between colloid particles and hence its measurement is a new important factor for the surface characterization of colloid particles. If the adsorbed ion mobility is small the approximation of the interaction at constant charge can be valid,but in opposite case the charge regulation occurs during their interaction.

The large surface diffusitivities of polyvalent ions adsorbed on negatively charged liposomes are found combining measurements of conductivity and electrophoresis. At a rather low surface charge and high adsorbability of polyvalent cations, the diffuse-layer charge can be very small in comparison with the Stern-layer charge, which can predominate in surface conductivity and provide information about the diffusitivity of adsorbed ions if it is not small. An efficient and simple method for the discrimination between small and large surface diffusitivities of adsorbed ions based on the determination of both iso-electric point and iso-conducting point is proposed and experimentally proved.  相似文献   

10.
This letter addresses how iron redox cycling and the hydration properties of the exchangeable cation influence the Br?nsted basicity of adsorbed water in 2:1 phyllosilicates. The probe pentachloroethane undergoes facile dehydrochlorination to tetrachloroethene, attributed to increases in the Br?nsted basicity of near-surface hydrating water molecules following the reduction of structural Fe(III) to Fe(II). This dehydrochlorination process is studied in the presence of Na(+)- or K(+)-saturated Upton montmorillonite [(Na0.82 (Si7.84 Al0.16)(Al3.10 Fe(3+)0.3 Mg0.66) O20 (OH)4] or ferruginous smectite [(Na0.87 Si7.38 Al0.62)(Al1.08) Fe(3+)2.67 Fe(2+)0.01 Mg0.23) O20 (OH)4]. The effect of iron redox cycling on pentachloroethane dehydrochlorination is studied using reduced or reduced and reoxidized smectite samples saturated with Na+ (fully expanded clay) or K+ (fully collapsed clay). Variations in the clay Br?nsted basicity following Na+ -for- K+ exchange are explained by cationic charge compensation or interlayer hydration/expansion imposed by the nature of the exchangeable cation. Inverse relations between K+ fixation and clay water content as well as trends in pentachloroethane transformation indicate that increases in the Br?nsted basicity result from increases in the clay hydrophilicity and shifts in the local activity of distorted clay water. Potassium fixation causes partially collapsed smectites bearing low amounts of structural Fe(II) to have a similar reactivity to that of fully expanded smectites (Na+ form) bearing higher amounts of structural Fe(II). In particular, the conversion of up to 80% of the pentachloroethane to tetrachloroethane by K+ -saturated, reoxidized Upton was explained because the fixation of K+ causes nonreversible expansion and incomplete reoxidation of structural Fe(II), which contributes to the stabilization of charge density near sites bearing Fe(II). Higher pentachloroethane conversions by Upton montmorillonite over ferruginous smectite, however, suggest that charge dispersion rather than site specificity contributes predominantly to clay reactivity. Thus, clay interlayer hydration/expansion imposed by the nature of the exchangeable cation alters water dissociation and proton exchange in Fe(II)-Fe(III) phyllosilicates susceptible to iron redox cycling.  相似文献   

11.
A detailed mathematical model for flocculation of colloidal suspensions in presence of salts and polymers is described and validated. In former case, the classical DLVO theory, which accounts for relevant variables such as pH and salt concentration, is incorporated into a geometrically sectioned discrete population balance model. For processes involving polymers, flocculation via simple charge neutralization is modeled using a modified DLVO theory in which the effect of adsorbed polymer layers on van der Waals attraction is included. The fractal dimension of aggregates is obtained by dynamic scaling of experimental data for time evolution of mean aggregate size. The particle surface potential is assumed to be approximately equal to the zeta potential. The model predictions are in close agreement with experimental results for flocculation of colloidal hematite suspensions in the presence of KCl and polyacrylic acid at different concentrations. In particular, given values of model parameters, e.g., Hamaker constant, fractal dimension, surface potential, and thickness of adsorbed polymer layer, the model can realistically describe the kinetics of flocculation by a simple charge neutralization mechanism and track the evolution of floc size distribution. Representative examples of sensitivity of the flocculation model to perturbations in surface potential and fractal dimension and to modification in the DLVO theory for polymer-coated particles are included.  相似文献   

12.
The synthesis of quaternized silica nanoparticles and its application to fine clay flocculation were investigated. N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride was used as a cationic reagent to introduce quaternary amine groups onto the surfaces of silica nanoparticles via the formation of covalent bonds between the methoxy groups of the cationic reagents and the silanol groups in the silica surface. The zeta potential, zeta, and charge density of the silica particles modified under various reaction conditions were determined. Dynamic clay flocculation experiments using a photometric dispersion analyzer (PDA) showed that the cationic silica alone contributed little to the flocculation. However, the cationic silica, in conjunction with an anionic polymer of high M(w) and low charge density, led to a significant improvement in the flocculation of fine clay particles. The mechanism of flocculation was explored by a systematic investigation of interaction between cationic silica and anionic polymers as well as of their adsorption behavior on clay surfaces. The influence of factors such as pH and electrolyte concentration on clay flocculation was also investigated.  相似文献   

13.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

14.
Peculiarities of the formation of polyelectrolyte complexes based on cationic and anionic copolymers of acrylamide having different macromolecule charge densities on the surfaces of kaolin particles in highly concentrated salt solution are investigated. The interactions of the copolymers with the clay particle surface and with each other are studied by electrokinetic and IR spectroscopy methods. The rheological properties of kaolin suspensions are investigated in a salt solution in the presence of the polyelectrolytes. The flocculation ability of the polyelectrolytes and their binary mixtures with respect to clay-salt dispersion is estimated. The mechanism for the formation of polyelectrolyte complexes on the surface of clay particles is discussed. It is shown that the complexation of oppositely charged polyelectrolytes on the surfaces of clay particles intensifies the flocculation of clay-salt dispersions.  相似文献   

15.
Using a model colloidal system of alumina and polyacrylic acid (PAA), the kinetics of flocculation was investigated at low polymer concentrations and short durations (on the order of seconds). The polymer-induced flocculation processes obeyed Von Smoluchowski's bimolecular rate equation. Increases in the concentration of the polymer resulted in higher rate constants for the flocculation process. At a fixed concentration (say 50 ppb, parts per billion), the rate constant values showed a maximum value for 250,000 g mol(-1) polyacrylic acid. At this polymer concentration, calculations of the surface coverage of alumina by PAA molecules of different molecular weights show that for all the cases the coverage is nearly the same, approximately 1x10(-3), but the flocculation response and the rates are significantly different. This trend in flocculation characteristics is attributed to the critical polymer number density requirement for effective flocculation (at least partial charge neutralization and initiation of flocculation). The mechanism governing the flocculation at ultralow concentrations (50 ppb) is the synergistic effect of partial patch neutralization and bridging.  相似文献   

16.
Summary Results of spectrophotometric, conductometric and dialysis studies on the interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate (anionic), cetyltrimethylammoniumbromide (cationic) and Triton X 100 (nonionic) surfactants have been reported. The anionic surfactant, SDS has been observed to undergo both electrostatic and hydrophobic interactions with the dye cation. Aggregation of the dye molecules can be destroyed when the surfactant is in large excess, whereas, excess dye can check micellization of SD S. At a ratio of AO:SDS=1:7 and above, dye embedded mixed micelles are formed. These remain in a separate phase, probably as coacervates. At lower ratios than 1:7, aggregation of dye molecules is induced, which being complexed with SDS become stabilized as colloids. The colloid and the coacervate have been observed to be thermally stable, negatively charged materials that can be broken by salts, and cations of higher valency are more effective in this regard. An 1:3 = AO:SDS colloid has beeen found to be sufficiently large like the coacervates to pass through a membrane having cut off permeability for molecular weights 12,000 and above. All the above features of AO-SDS interaction have been observed to be absent for AO-CTAB and AO-TX 100 systems, Even hydrophobic interaction has played an insignificant role in these cases. Thus, the dye cation, the cationic and the nonionic surfactants have almost retained their self physicochemical identities in solution in the presence of each other. Electrostatic interaction is thus the primary requirement for acridine orange-surfactant (anionic) system; the hydrophobic effect is secondary and may become co-operative.With 9 figures and 2 tables  相似文献   

17.
The flocculation kinetics of kaolin particles induced by two polyelectrolytes is studied by using small-angle laser light scattering (SALLS). Two different methods, image analysis and SALLS, are used to calculated the fractal dimensions of flocs formed under different flocculation mechanisms. For a high charge density of polydiallyldimethylammonium chloride (PDADMAC), the initially flocculation rates are slow due to the quite low molecular weight. Smaller and more compact flocs are in the particle–particle connections, and restructuring of the flocs occurs in the flocculation process. With cationic polyacrylamide C498 of very high molecular weight and low charge density, however, the initially flocculation rates are much higher due to its rapid adsorption on kaolin particles, but it will take the adsorbed polymer a much longer time to reach equilibrium due to re-conformation. High potentialities of adsorption prevent the particles from entering the interior of the floc structure or rearrangement, which results in a more open floc structure. Different underlying flocculation mechanisms are evident for these two kinds of polyelectrolytes, in which charge neutralization is mainly involved for the low molecular weight and high charge density polymer of PDADMAC while polymer bridging is suggested to be the dominant mechanism for the high molecular weight polyelectrolyte of C498.  相似文献   

18.
The colloid stability of supramolecular assemblies composed of the synthetic cationic lipid dioctadecyldimethylammonium bromide (DODAB) on carboxymethyl cellulose (CMC) supported on polystyrene amidine (PSA) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DODAB adsorption on CMC-covered particles. At 0.1 g L(-1) CMC and 2 x 10(11) PSA particles/mL, CMC did not induce significant particle flocculation, and a vast majority of CMC-covered single particles were present in the dispersion so that this was the condition chosen for determining DODAB concentration (C) effects on particle size and zeta potentials. At 0.35 mM DODAB, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DODAB/CMC/PSA assembly. At 0.1 g L(-1) CMC, isotherms of high affinity for DODAB adsorption on CMC-covered particles presented a plateau at a limiting adsorption of 700 x 10(17) DODAB molecules adsorbed per square meter PSA which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy (ca. 11-nm hydrodynamic thickness), and maximal adsorption of DODAB lipid onto this layer produced a compressed composite cationic film with 20 mV of zeta potential and about 10-nm mean thickness. The assembly of cationic lipid/CMC layer/polymeric particle was stable only well above charge neutralization of the polyelectrolyte by the cationic lipid, at relatively large lipid concentrations (at and above 1 mM DODAB) with charge neutralization leading to extensive particle aggregation.  相似文献   

19.
The spectroscopic behavior of the dye MB in suspensions of different clays have been used for evaluating layer charge density influence on the adsorption properties of the particles. The clays with higher charge density, like SAz-1 and SCa-3, promote a higher aggregation and do not show deaggregation at longer times, so that practically only the aggregate peak at approximately 570 nm is observed, without any change with time. This is due to, on one side, the larger particle size that decreases the surface area available for adsorption. Additionally, the clay layers will be held together more tightly, avoiding the migration of the dye to the interlamellar region. On the other hand, SWy-1, having a lower charge density, shows a completely different behavior. The dye molecules, initially adsorbed as aggregates on the outer surface of the clay, deaggregate to form monomers that migrate to the interlamellar spaces, giving rise to absorption bands at 670 and 760 nm. Experiments using Ca-exchanged SWy-1, variation of the ionic strength by addition of salt, and the use of different size fractions of the clays confirm the finding that the main factor ruling the adsorption behavior of the probe is the size of the clay particles.  相似文献   

20.
The effects of cationic polyethylenimine (PEI) on the colloidal stability of anionic fines (microcrystalline cellulose or thermomechanical fines), fillers (clay) and their mixtures in deionized and tap water were investigated, using a photometric dispersion analyzer. Measurements confirmed that PEI flocculates all used materials by charge neutralization. As expected, higher additions of PEI lead to electrostatic stabilization of microcellulose and clay suspensions, but it was not possible to stabilize the suspension of fines using high additions of PEI. This is ascribed to the mechanical entanglements of fibrillar fines. In tap water, much more PEI is needed to reach optimum flocculation conditions than in deionized water. Heteroflocculation between PEI-coated clay and fines takes place with a rate which, for high fines concentration and a constant clay concentration, is independent of fines concentration. A theoretical model for the heteroflocculation of fines with PEI-coated clay has been developed, which explains the observed trends. In essence, clay particles can act as bridging agents for fines flocculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号