首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ethyl-bridged organic–inorganic hybrid silica particles were prepared via a sol–gel and hydrothermal synthesis approach using 1,2-bis(triethoxysilyl)ethane (BTESE) as the sole precursor, and triblock copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (P123) and dodecyltrimethylammonium bromide (DTAB) as combined templates. The morphology, pore structure, chemical composition and liquid chromatographic performance of the obtained materials were investigated in detail. The particles exhibit a high surface area of 1136.40 m2/g, together with a pore volume of 0.39 cm3/g and an average pore size of 2.30 nm. Used as stationary phase for high-performance liquid chromatography (HPLC), the particles without extra bonding either C18 or C8 can successfully separate a mixture of uracil, phenol, pyridine, methylbenzene, ethylbenzene and tert-butylbenzene. The obtained materials also show practical application in the separation of phthalate acid esters (PAEs), which are harmful to environment and human health. Although the columns packed with ethyl-bridged organic–inorganic hybrid silica show lower column efficiency and peak symmetry compared to commercial column, they have considerably higher chemical stability in alkaline mobile phase. The HSS column also possesses high mechanical stability which is similar to that of the commercial column.  相似文献   

2.
In this study, hybrid nanocomposites were synthesized by photo-crosslinking of poly (ethylene glycol) methyl ether acrylate/poly (ethylene glycol) diacrylate monomer system using 2- (carboxymethoxy) thioxanthone and POSS-(PEG2000)8. Additionally, AgNO3 was added to this formulation and in situ formation of silver nanoparticles onto hybrid nanocomposites were achieved in one-step. UV–Vis spectroscopy technique was used as a very useful tool for surface plasmon resonance band detection of silver nanoparticles. In addition to thermogravimetric analyses which were performed in nitrogen atmosphere to determine the thermal stability of the nanocomposites, dynamic light scattering, and scanning electron microscopy techniques were also used for size and morphology of silver nanoparticles in a hybrid network. TGA analyses proved that even the addition of a very low amount of POSS-(PEG2000)8 made noteworthy contribution to thermal stability especially in the presence of silver nanoparticles in the hybrid network. The swelling capacities of the prepared films were examined at 1, 3 and 24 h in phosphate buffer solution (pH = 7.4). It was found that film containing only POSS-(PEG2000)8 had the highest swelling ratio in the shortest time.  相似文献   

3.
Ag nanoparticle-embedded one-dimensional β-CD (β-cyclodextrin)/PVP composite nanofibers were prepared using a one-step electrospinning technique. Ag nanoparticles were obtained in the AgNO3/β-CD/DMF solution, in which silver nitrate been introduced as the precursor, DMF as solvent, β-CD as reducing and capping agent. After electrospinning of the composite solution at room temperature, the β-CD/PVP nanofibers containing Ag nanoparticles were obtained. The electrospun composite solution containning Ag nsnopsrticles were confirmed by UV-visible absorption spectra; the resulting composite nanofibers were characterized by scanning electron microscopy , transmission electron microscopy, and X-ray diffraction. Ag-β-CD/PVP nanofiber exhibits good antibacterial property for Escherichia coli and Staphylococcus aureus. Consequently, we propose that these Ag nanoparticle-embedded 1D-nanostructures prepared via electrospinning may be used as antibacterial material.  相似文献   

4.
Thermo-reversible silver nanoparticles (Ag-NPs) were prepared by the sodium borohydride reduction of silver nitrate (AgNO3) in the presence of a pentablock terpolymer, poly(N-isopropylacrylamide)-b-poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide) (PNIPAM150-PEO136-PPO45-PEO136-PNIPAM150). The pentablock terpolymer-stabilized silver nanoparticles (Pentablock-S-Ag) were characterized by UV-VIS spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM). At temperatures below lower critical solution temperature (LCST) of Pentablock-S-Ag solutions, the obtained Ag-NPs are well-dispersed with spherical shape, and their sizes mainly depend upon the molar ratios of pentablock terpolymer to AgNO3; at temperatures above LCST, the size of Ag-NPs decreases and their aggregates are observed due to the collapse and shrinkage of the thermo-responsive PNIPAM and PPO segments. A reversible dispersion-aggregation process upon recyclically changing temperature is also observed.  相似文献   

5.
Ag-doped TiO2 wet gels were prepared by sol?Cgel process using a mixture of titanium isopropoxide and silver nitrate as precursor solution, with Ag:Ti molar ratio of 1:6. After drying, the titanium oxide xerogels were used as template in the preparation of nano and microcrystals of metallic silver. The porous network and the structure of the titania matrix influenced the type and distribution of silver crystal produced on the composite surface. Silver nanoparticles segregated to the surface of titania xerogel during the heating step, giving rise to nanocrystals that coalesced forming microcrystals with different shapes and faceting. The microcrystals grew on the composite surface, reaching sizes between 5 and 20 microns and self-organized of different ways. The xerogel heated at 600 °C formed by anatase, rutile and silver nanoparticles exhibited considerable photocatalytic activity to degrade methylene blue.  相似文献   

6.
A variety of Ag nanoparticles/oxide mesoporous films with templated silica, titania, and zirconia was synthesized by sol–gel method at glass, aluminum, and silicon substrates using metal alkoxides (tetraethoxysilane, titanium tetraisopropoxide, and zirconium tetrapropoxide) and AgNO3 as precursors of oxide films and Ag nanoparticles, respectively, and Pluronic P123 as a template agent. Oxide films alone and Ag/oxide composites were characterized using hexane adsorption, X-ray diffraction (XRD), Raman and ultraviolet (UV)/vis spectroscopies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The distribution of Ag nanoparticles within the films, their sizes, intensity, and position of surface plasmon resonance (SPR) absorbance band at λ = 400 nm, as well as the textural and structural characteristics of whole films depend on treatment temperature, types of substrates and oxide matrices, oxide crystallization, and Ag content. Ag nanoparticles form preferably on the outer surface of the films under lower sintering temperatures if the amount of loaded silver is low. Oxide crystallization (e.g., TiO2) promotes silver embedding into the outer film layer. At higher silver content (≥10 at.%) and higher calcination temperature (873 K), silver nanoparticles could be entrapped more uniformly along the film profile because of more intensive evaporation of silver droplets from the outer surface of the films on heating.  相似文献   

7.
We report the fabrication of nano silver coated patterned silica thin film by sol–gel based soft lithography technique. Initially, silica gel film on soda lime silica glass was prepared by dipping technique from a silica sol of moderate silica concentration. A PolydimethylSiloxane elastomeric stamp containing the negative replica of the patterns of commercially available compact disc was used for embossing the film and the embossed film was cured up to 450 °C in pure oxygen atmosphere for oxide film. Finally, a precursor solution of AgNO3 in water containing polyvinyl alcohol as an organic binder was made and used for coating on the patterned silica film by dipping technique and cured the sample up to 450 °C in reducing gas atmosphere to obtain nano silver layer. The formation of only cubic silver (~4.0 nm) and both cubic silver (~5.2 nm) and silver oxide (~3.6 nm) crystallites at 350 and 450 °C film curing temperatures respectively were confirmed by XRD measurements. The % of nano silver metal and silver oxide were 75.4 and 24.6 respectively. The nano-structured surface feature was visualized by FESEM whereas AFM revealed the high fidelity grating structure of the films. Presence of both spherical and rectangular structure (aspect ratio, 2.37) of nano silver/silver oxide was confirmed by TEM. The films were also characterized by UV–Vis spectral study. The patterned film may find application in chemical sensor devices.  相似文献   

8.
An acid urethane oligodimethacrylate based on poly(ethylene glycol) was synthesized and used in the preparation of hybrid composites containing silsesquioxane sequences and titania domains formed through sol‐gel reactions along with silver/gold nanoparticles (Ag/Au NPs) in situ photogenerated during the UV‐curing process. The photopolymerization kinetics studied by Fourier transform infrared spectroscopy and photoDSC showed that the photoreactivity of the investigated formulations depends on the amount of titanium butoxide (5–20 wt %) added in the system subjected to UV irradiation. The introduction of 1 wt % AgNO3/AuBr3 in formulations slightly improved the degree of conversion but diminished the polymerization rates. The formation of hybrid materials comprising predominantly amorphous TiO2/SiO2 NPs, with or without Ag/Au NPs, was confirmed through specific analyses. The evaluation of photocatalytic activity demonstrated that the synthesized hybrid films are suitable for the complete removal of organic pollutants (phenolic compounds) from water under UV irradiation (200–350 min) at low intensity (found in the solar radiation). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1189–1204  相似文献   

9.
Mastery over the microscopic shape and size of a nanoparticle enables accurate control of its properties for some strict application. The mechanism of shape-controlled synthesis was discussed by investigating the formation of silver nanospheres prepared by chemical reduction method using Ag(NH3)2+ as metal source, ascorbic acid as reducing agent and polyvinylpyrrolidone (K-30) as dispersant. The effects of temperature, PVP/AgNO3 mass ratio, pH value and the interaction between PVP and silver on the shape and particle size were studied by XRD and SEM. The results show that the morphology of silver particles could transform from branched to spherical and the particle size gradually decrease with the increase of PVP/AgNO3 mass ratio. The particles size can also be significantly influenced by pH value and temperature. The key point for preparing high dispersity spherical silver powder is that the growth rate of each plane of the particle must be uniform and synchronous. Silver powders with spherical particles with mean size of 0.2 μm were synthesized under the optimum conditions (PVP/AgNO3 mass ratio 0.6, pH 7, reaction temperature of 40°C).  相似文献   

10.
Silica‐supported AgNO3 (AgNO3–SiO2) catalyzes the dearomatizing spirocyclization of alkyne‐tethered aromatics far more effectively than the analogous unsupported reagent; in many cases, reactions which fail using unsupported AgNO3 proceed effectively with AgNO3–SiO2. Mechanistic studies indicate that this is a consequence of silver nanoparticle formation on the silica surface combined with a synergistic effect caused by the silica support itself. The remarkable ease with which the reagent can be prepared and used is likely to be of much synthetic importance, in particular, by making nanoparticle catalysis more accessible to non‐specialists.  相似文献   

11.
Mesoporous polyvinylpyrrolidone (PVP)/SiO(2) composite nanofiber membranes functionalized with thioether groups have been fabricated by a combination method of sol-gel process and electrospinning. The precursor sol was synthesized by one-step co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-bis(triethoxysilyl)propane tetrasulfide (BTESPTS, (CH(3)CH(2)O)(3)Si(CH(2))(3)S-S-S-S(CH(2))(3)Si-(OCH(2)CH(3))(3)), with the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123, EO(20)PO(70)EO(20)) as template. After the addition of PVP, nanofiber membranes were prepared by electrospinning. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption-desorption isotherms, and an Elementar Vario EL analyzer. The composites were used as highly selective adsorbents for Hg(2+) due to the modification with thioether groups (-S-), and were conveniently separated from the waste water. The composite could be regenerated through acidification.  相似文献   

12.
A newly designed two-step acid–base sol–gel method for the synthesis of Ag-doped hybrid materials with tailored physicochemical properties is presented. In the proposed protocol, Ag+ is in situ reduced by Si–H bonds of polymethylhydrosiloxane (PMHS) in the absence of an additional reductant. Hydrolysis of the alkyloxysilane groups of tetraethoxysilane and PMHS or 3-mercaptopropyltrimethoxysilane (MPTMS) can be promoted by the release of H+ due to complexation between Ag+/Ag0 and thiol groups. Newly formed nanosilver can be fully stabilized by a sol–gel reaction and embedded parallel to the skeletons. The MPTMS dosage used during synthesis has a significant impact on the textural characteristics of the final products. The properties of as-prepared materials are characterized by Brunauer-Emmett-Teller analysis, transmission electron microscopy, and X-ray photoelectron spectroscopy. This study presents a novel method for the synthesis of Ag-doped hybrid materials using the synergetic effects of common organosilane precursors.  相似文献   

13.
A novel organic‐inorganic hybrid electrolyte based on poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) triblock copolymer (Pluronic P123) complexed with LiClO4 via the co‐condensation of an epoxy trialkoxysilane and tetraethylorthosilicate was prepared. Characterization was made by a variety of techniques including powder X‐ray diffraction, AC impedance, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and multinuclear solid state NMR measurements. The hybrid with [O]/[Li] = 16 exhibited a mesophase with a certain degree of ordering, which arose by the self‐assembly of P123 with the silica network. The P123 triblock copolymer acts as a structure‐directing surfactant to organize with silica networks and as a polymer matrix to dissolve alkali lithium salts as well. The DSC results indicated the formation of transient crosslinking between Li+ ions and the ether oxygens of the EO and PO segments, resulting in an increase the Tg with increasing salt concentrations. Variable temperature 7Li‐{1H} MAS NMR spectra revealed the presence of two different local environments for lithium cations, probably due to the lithium cations in the polymer‐rich domain and in the silica‐rich domain, respectively. A combination of XRD and conductivity results suggests that the drastically enhanced conductivity for the ordered hybrid electrolyte is closely related to the formation of mesophase, which may provide unique Li+ conducting pathways.  相似文献   

14.
We have employed a number of reducing and capping agents to obtain Ag(0) metallic nanoparticles of various sizes and morphologies. The size and morphology were tuned by selecting reducing and capping agents. Spherical particles of 15 and 43 nm diameter were obtained when 1 wt% aqueous starch solution of AgNO3 precursor salt was reduced by d(+)-glucose and NaOH, respectively, on heating at 70 °C for 30 min. Smaller size particles obtained in the case of d(+)-glucose reduction has been attributed to the slow reduction rate by mild reducing agent d(+)-glucose compared to strong NaOH. Conducting the reduction at ambient temperature of silver salt in liquid crystalline pluronic P123 and L64 also gave spherical particles of 8 and 24 nm, respectively, without the addition of any separate reducing agent. NaOH reduction of salt in ethylene glycol (11 g)/polyvinyl pyrolidone (PVP; 0.053 g) mixture produced large self-assembled cubes of 520 nm when smaller (26–53 nm) star-shaped sharp-edged structures formed initially aggregated on heating the preparation at 190 °C for 1 h. Increasing the amount of PVP (0.5 g) in ethylene glycol (11 g) and heating at 70 °C for 30 min yielded a mixture of spherical and non-spherical (cubes, hexagons, pentagons, and triangle) particles without the addition of an extra reducing agent. Addition of 5 wt% PVP to 1 wt% aqueous starched solution resulted in the formation of a mixture of spherical and anisotropic structures when solution heated at 70 °C for 1 h. Homogeneous smaller sized (29 nm) cubes were synthesized by NaOH reduction of AgNO3 in 12.5 wt% of water-soluble polymer poly(methyl vinyl ether) at ambient temperature in 30 min reaction time.  相似文献   

15.
In this paper, the polyhedral Pt nanoparticles under control were prepared by polyol method using AgNO3 and poly(vinylpyrrolidone) (PVP) in the reduction of H2PtCl6 with ethylene glycol (EG). Transmission electron microscopy (TEM) and high resolution (HR) TEM measurements were used to investigate their characterization. In the case of the previous removal of PVP by washing and heating at 300°C, the specific morphologies of polyhedral Pt nanoparticles were still observed. However, the removal of PVP only by heat treatment at 300°C without washing causes the significant variation of their morphology. The large Pt particles were observed in the self-aggregation and assembly of the as-prepared polyhedral Pt nanoparticles. The pure Pt nanoparticles by washing and heat treatment showed the electrocatalytic property better than PVP-Pt nanoparticles by heat treatment due to the incomplete removal of PVP and by-products from AgNO3. Therefore, the removal modes of PVP without changing their characterization are required to obtain the good catalytic performance.  相似文献   

16.
This work reports on the synthesis of three acid oligosiloxane‐urethane dimethacrylates and their use to obtain hybrid nanocomposite films, in which the presynthesized silver nanoparticles (NPs) were incorporated before photopolymerization, or produced via in situ photoreduction of the silver nitrate (AgNO3) precursor into the formulation, without any conventional reducing agent. All samples were characterized by 1H NMR, FT‐infrared and UV spectroscopies, photodifferential scanning calorimetry (photo‐DSC), transmission electron microscopy (TEM), and energy‐dispersive X‐ray (EDX) analysis. Fourier transformed infrared spectroscopy and photo‐DSC results showed that dimethacrylates having hydrophilic segment of poly(ethylene oxide) type in structure are more reactive than the acid oligosiloxane dimethacrylate. When another urethane dimethacrylate is taken as a comonomer, the photopolymerization rate (0.112–0.132 s?1) and the degree of conversion (82–93%) significantly increased. Experimental evidence of the existence of nanosilver into the polymer matrix generated upon UV irradiation has been supported by UV spectroscopy, EDX and TEM analysis, the last allowing a visualization of the formation of silver NPs with size between 2 and 15 nm. Mechanical parameters and wettability of the photocrosslinked films are also discussed in the prospect of further potential applications in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Silver nanoparticles well dispersed in a spherical Poly(vinylpyrollidone)(PVP) matrix were simply prepared by spray pyrolysis of aqueous solutions of AgNO3 and PVP without any reducing agent. Highly monodisperse silver particles were obtained above the initial mass ratio of PVP/AgNO3 ∼ 1 and in a certain narrow temperature range. Below the critical mass ratio the silver particles grew to larger ones polydispersely. As the ratio increased above it, they became smaller maintaining their monodispersity. The use of PVP considerably decreased the reduction temperature of the silver nitrate from 450 °C to 250 °C under the same pyrolysis conditions, due to its reducing nature. As the pyrolysis temperature increased above the decomposition temperature of PVP, the silver particles in the matrix grew to merge to a single particle while their crystallite size did not increase as much. The spherical assemblies of the silver nanoparticles were hardly disengaged even after severe washing off the matrix materials. The mechanism of the nanoparticle growth was also discussed.  相似文献   

18.
In this work, ethylene epoxidation reaction for ethylene oxide production over silver catalysts loaded on two different supports (silica and alumina particles) in a low-temperature AC dielectric barrier discharge (DBD) reactor was investigated. The DBD plasma system was operated under the following base conditions: an O2/C2H4 feed molar ratio of 1/4, a total feed flow rate of 50 cm3/min, an electrode gap distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV. From the results, the presence of silver catalysts improved the ethylene oxide production performance. The silica support interestingly provided a higher ethylene oxide selectivity than the alumina support. The optimum Ag loading on the silica support was found to be 20 wt%, exhibiting the highest ethylene oxide selectivity of 30.6%.  相似文献   

19.
Poly(ethylene oxide)-b-poly(L-lactic acid) (PEO-PLLA) diblock copolymers were synthesized via a ring opening polymerization from poly(ethylene oxide) and l -lactide. Stannous octoate was used as a catalyst in a solution polymerization with toluene as the solvent. Their physicochemical properties were investigated by using infrared spectroscopy, 1H-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry, as well as the observational data of gel-sol transitions in aqueous solutions. Aqueous solutions of PEO-PLLA diblock copolymers changed from a gel phase to a sol phase with increasing temperature when their polymer concentrations are above a critical gel concentration. As the PLLA block length increased, the gel-sol transition temperature increased. For comparison, diblock copolymers of poly(ethylene oxide)-b-poly(l -lactic acid-co-glycolic acid) [PEO-P(LLA/GA)] and poly(ethylene oxide)-b-poly(dl -lactic acid-co-glycolic acid) [PEO-P(DLLA/GA)] were synthesized by the same methods, and their gel-sol transition behaviors were also investigated. The gel-sol transition properties of these diblock copolymers are influenced by the hydrophilic/hydrophobic balance of the copolymer, block length, hydrophobicity, and stereoregularity of the hydrophobic block of the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2207–2218, 1999  相似文献   

20.
In this work, cellulose–Ag@AgCl composite films have been fabricated directly through a one-step coagulation of a cellulose/1-butyl-3-methylimidazolium chloride (BmimCl) solution with AgNO3 and PVP. The AgCl was formed upon the addition of AgNO3 to a cellulose/BmimCl solution, and underwent further reaction with excess Cl?, leading to the complete dissolution of AgCl. The AgCl crystals were regenerated on the cellulose matrix during the coagulation process. The AgCl was partial decomposed to Ag0 and formed Ag@AgCl under visible light irradiation. The morphology of Ag@AgCl in the cellulose matrix was controlled by varying the concentration of PVP. The addition of PVP enabled the formation of stable cellulose films embedded with Ag@AgCl. The composite film demonstrated efficient photodegradation of methyl orange, which was retained upon recycling. This work thus provides a simple pathway for the preparation of Ag@AgCl embedded on a polymer support via one-step coagulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号