首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甲烷氧化偶联La—Mn—Li系复合氧化物催化剂的研究   总被引:1,自引:0,他引:1  
用XRD、IR、XPS和SEM等方法研究了混合氧化物LiLa_(1-x)Mn_xO_2的结构和它们对甲烷氧化偶联的催化性能。结果表明,随着MnO_2的变化,可形成一系列复合氧化物,其中三元复合氧化物La_2Mn_(1-y)Li_yO_4是甲烷氧化偶联的活性相,由于Li~+部分取代Mn~(2+)形成Li~+-O~--Mn(2+)缺陷簇,增加了活性氧种的浓度和再生速度是这种氧化物具有较高甲烷偶联活性的主要原因。脉冲实验证明,CH_4脱氢生成CH_3·偶联生成C_2H_6,进一步氧化脱氢生成C_2H_4都可在催化剂表面完成,而CO和CO_2是在气相反应中生成的。在780℃C_2收率可达23.9%。  相似文献   

2.
报道了CeO_2-W-Mn/SiO_2催化剂常压和加压条件下的甲烷氧化偶联反应性能, 详细考察了反应条件对CeO_2-W-Mn/SiO_2催化剂反应性能的影响. 结果表明, CeO_2-W-Mn/SiO_2催化剂具有优异的催化活性, 常压下可得到29.7%的甲烷转化率和81.3%的C_2烃选择性, 低温活性高, 于710 ℃可得到甲烷转化率11.4%和C_2烃选择性86.7%的结果;该催化剂适宜于加压条件下的甲烷氧化偶联反应, 0.6 MPa下可获得37.2%的甲烷转化率和73.8%的C_2烃选择性. 催化剂表征结果显示CeO_2的加入增强了W-Mn/SiO_2催化剂的储氧能力.  相似文献   

3.
以低价元素掺杂SrTiO_3形成的SrTi_(1-x)MxO_(3-δ)(M=Al~(3+),Mg~(2+),Li~+;x=0~0.2)基本保持了SrTiO_3晶格结构。随着掺杂元素价态的降低和掺杂量的增加,p型电导升高,甲烷氧化偶联反应的C_2选择性和C_2收率也增加。在以不同价态元素掺杂的SrTiO_3体系中,发现C_2选择性和C_2收率与催化剂P型电导间有线性关系。认为掺杂SrTiO_3催化剂中的正导电空穴易与晶格氧发生电子交换生成部分还原态的活泼氧物种O~-,它可以使CH_4分子活化生成CH_3,进一步偶联生成C_2产物。掺杂SrTiO_3催化剂在甲烷氧化偶联反应初始阶段可吸收反应中产生的CO_2,使结构发生少许变化,稳定的SrTiO_3结构有利于甲烷氧化偶联活性的稳定。  相似文献   

4.
张兆龙  王水菊 《分子催化》1990,4(3):194-199
利用ESCA研究比较了CH_4—O_2在过渡金属铁和锰表面上的化学行为,结果表明:(1)在室温和高真空(P=10~(-5)Pa)下,甲烷与金属(铁和锰)表面和预先氧化的金属(Fe_2O3和MnO)表面作用,均未观察到有任何化学反应。但当甲烷与氧共吸附时,金属表面上就可检测到碳物种生成(CH_x,CH_xO,Carbide等),说明过渡金属铁和锰表面上的过渡态氧能够使甲烷脱氢活化;(2)合理地选择反应气CH_4/O_2比值。对有效且有选择地进行甲烷转化十分重要。CH_4/O_2比值太低,易使在表面生成的碳物种深度氧化;CH_4/O_2比值太高,表面生成碳物种的速率(甲烷转化率)大为减小;(3)在设计和选择甲烷氧化偶联反应催化剂时,应考虑催化剂表面上金属离子对氧和碳的键合强度因素。  相似文献   

5.
甲烷氧化偶联制乙烷、乙烯是一种最直接有效的甲烷转化工艺路线。催化剂的结构、碱性、活性组分的状态及分布和氧物种的性质是影响甲烷氧化偶联性能的重要因素,而这些因素与催化剂组成直接相关。以固体酸WO_3/TiO_2为载体,采用浸渍法制备出一系列负载Li、Mn活性组分的催化剂。利用电感耦合等离子体发射光谱(ICP-O_ES)、X射线衍射(XRD)、高分辨透射电镜(HRTEM)、CO_2程序升温脱附(CO_2-TPD)、O_2程序升温脱附(O_2-TPD)、H_2程序升温还原(H_2-TPR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和CH_4程序升温表面反应(CH_4-TPSR)等表征技术对催化剂进行了研究,发现Li的添加提高了C2选择性,并有效抑制了甲烷深度氧化形成CO_2的过程。XRD分析表明Li的添加不仅能够促进锐钛矿型二氧化钛向金红石型二氧化钛转化而且促使了高价锰离子的还原。XPS与CO_2-TPD分析表明Li的增加有利于增加催化剂表面的晶格氧含量和降低催化剂表面的碱性。O_2-TPD分析表明Li含量逐渐升高能够促使晶格氧的移动性增强,从而提高催化剂的反应性能。催化剂的性能受Mn物种的含量与价态的影响,过多的Mn物种对甲烷氧化偶联是不利的,易造成甲烷的深度氧化。同时,Li和Mn活性组分通过协同作用影响着催化剂的反应性能,能够形成新的活性物种MnTiO_3提高甲烷氧化偶联的低温活性。催化剂在n(Li):n(Mn)=2:1、反应温度750°C条件下,C2产率达16.3%,表现出最佳催化效果。  相似文献   

6.
采用共沉淀法并通过改变焙烧温度制备了一系列具有不同晶相结构的La_2Zr_2O_7催化剂,在微型固定床反应器上评价其甲烷氧化偶联反应性能,并利用XRD、Raman、CO_2-TPD、XPS等表征手段,探究催化剂的物相结构、表面碱性以及表面氧物种的变化规律。结果表明,随着焙烧温度从700℃逐渐升高到1200℃,La_2Zr_2O_7催化剂结晶度不断提高,晶相发生明显变化,从无定形结构逐渐向缺陷萤石结构过渡,最终转变成烧绿石结构。焙烧温度提高促使La_2Zr_2O_7晶相转变过程中,催化剂表面的碱性强度减弱,中等碱性位数量以及具有催化活性的表面氧物种O_2~(2-)和O_2~-的相对含量不断减少,致使催化剂的CH_4转化率和C_(2+)选择性不断降低。其中,无定形LZO-CP-700催化剂表现出最佳的甲烷氧化偶联反应性能。  相似文献   

7.
陈曙 《分子催化》1992,6(3):220-229
以碱土金属Ba、Sr代替碱金属与氧化能力较强的Pr、Ce相匹配,可以得到稳定性、活性都更好的催化剂。对于Ba-Pr二元体系,组成为BaPrO_3者C_2的收率及选择性可达极大值,在1083 K及CH_4:O_2=5:1条件下,经100 h反应考察,始终保持恒定的反应性能:甲烷转化率为20%,C_2选择性可达57%。催化剂的反应性能与催化剂组成的关系表明,碱性与氧化能力之间有协同作用。XRD结果表明,Ba和Sr离子分别进入了PrO(1.8)和CeO_2的晶格,抑制其燃烧性能。动力学研究结果支持了这种推测:甲烷氧化偶联反应的控制步骤是甲烷分子在PrO_(1.8)相上的C-H键断裂。  相似文献   

8.
Li-Mn/WO_(3)/TiO_(2)催化剂具有良好的低温OCM催化性能,采用浸渍法制备Li-Mn/WO_(3)/TiO_(2)催化剂,并详细考察WO_(3)对催化剂物理化学性质及催化性能的影响.利用X射线衍射(XRD)、CO_(2)程序升温脱附(CO_(2)-TPD)、O_(2)程序升温脱附(O_(2)-TPD)、H_(2)程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等表征技术对催化剂进行了研究,发现WO_(3)的添加提高了C_(2)选择性,并有效抑制了深度氧化.XRD与CO_(2)-TPD结果表明,WO_(3)的添加不仅有利于金红石型TiO_(2)的形成而且能够中和催化剂表面的强碱位,从而抑制了深度氧化反应.O_(2)-TPD和H_(2)-TPR结果表明,WO_(3)的添加降低了晶格氧(O^(2-))移动性,进而提高了反应的C_(2)选择性.此外,WO_(3)的添加促使了低温氧化偶联活性物种MnTiO_(3)的形成并提高了活性物种的分散性,因此提高了催化剂甲烷氧化偶联的反应活性和选择性.所有Li-Mn/x%WO_(3)/TiO_(2)催化剂中,Li-Mn/5%WO_(3)/TiO_(2)催化剂显示出最佳的OCM反应性能.在750℃,CH_(4)∶O_(2)∶N_(2)=10∶4∶5,GHSV=2280 mL·g^(-1)·h^(-1)条件下,最高的C_(2)产物收率可达16.3%.  相似文献   

9.
本文制备了一系列Fe-Mn/Al_2O_3催化剂,并在固定床上考察了其NH_3低温选择性催化还原NO的性能.首先考察了不同Fe负载量制备的催化剂的脱硝性能,优选出最佳的Fe负载量;在此基础上,研究了Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗H_2O和抗SO_2性能进行了实验研究;同时,对催化剂由于SO_2所造成的失活机制进行了考察.采用N_2吸附-脱附、X射线衍射、透射电镜、能量弥散X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的Fe和Mn负载量均为8%,所制的8Fe-8Mn/Al_2O_3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%.Fe在催化剂表面主要以Fe~(3+)形态存在,而Mn主要包括Mn~(4+)和Mn~(3+);Mn的添加提高了Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对NH_3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的Mn~(4+)/Mn~(3+)和增强的表面吸附氧.此外,8Fe-8Mn/Al_2O_3的催化性能受H_2O和SO_2影响较小,抗H_2O和SO_2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好;SO_2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

10.
锂在甲烷氧化偶联多元氧化物催化剂中的作用   总被引:3,自引:0,他引:3  
考察了不同Li含量对Li_xLa_(0.5)Ti_(0.5)系氧化物催化剂的甲烷氧化偶联催化性能的影响;比较了水洗前后LiLa_(0.5)Ti_(0.5)氧化物催化剂的催化活性,并通过XRD、IR、XPS和BET等方法时催化剂进行表征。确认了Li在含稀土、过渡金属多元氧化物中的作用。其中,表面Li的作用是缩小催化剂的比表面积,覆盖表面深度氧化活性位,提高C_2选择性;体相Li的作用是部分取代Ti~(3+)进入LaTiO_3晶格形成LaTi_(1-y)LiyO_(3-λ)活性相,产生甲烷氧化偶联Li~+-O~--Ti~(3+)缺陷簇。(注:Li_xLa_(0.5)Ti_(0.5)和LiLa_(0.5)Ti_(0.5)表示该系列氧化物催化剂制备时的各金属元素的配比。用来表示催化剂的名称,并不表示实际存在的物相,以下类同,下面出现时,不再加以说明。)  相似文献   

11.
La-Ba系氧化物催化剂用于甲烷氧化偶联   总被引:1,自引:0,他引:1  
以La_2O_3为基础,碱土金属作为第二组分的二元氧化物催化剂均具有较高的生成C_2活性,特别是La-Ba-O系催化剂具有优良的甲烷氧化偶联活性和稳定性,当La/Ba原子比为2.5时,C_2收率可达20.3%。第三组分的添加有助于提高C_2选择性,特别是添加碱金属,可以抑制完全氧化反应,并提高乙烯/乙烷比。在La:Ba:Na=2.5:1:0.1的催化剂上进行了500/小时的寿命实验,在整个反应期间,催化剂的活性和选择性相当稳定。X-射线物相分析表明,新鲜催化剂除有少量的碳酸钡外,主要是氧化镧和氧化钡的混合物。500小时后的物相基本上是氧化镧和碳酸钡。使用前后催化剂的比表面积及表面La和Ba的分布均无改变。较高的CH_4/O_3比对提高C_2选择性有利,当CH_4:O_2=4:1时,C_2选择性和收率分别为65.1%和19.1%。  相似文献   

12.
本文用XRD、TEM、XPS和荧光光谱等方法研究了一组不同Li~+含量的Li/MgO催化剂的结构及表面性质,并与它们的氧化偶联甲烷的催化性能相关联。结果表明,低配位O~(2-)(O_(3c)~(2-))是使甲烷活化的活性中心。O_(1s)结合能为531.9eV的氧物种是对甲烷氧化偶联反应的C_2选择性起作用的活性氧物种。  相似文献   

13.
采用氧化还原法合成了层状锰氧化物(OL),并以OL为载体采用离子交换法制备了不同Cu负载量的Cu_x/OL催化剂。利用X射线衍射(XRD)、电子扫描电镜(SEM)、N_2吸附/脱附、H_2~-程序升温还原(H_2-TPR)、TG(热重)、X射线光电子能谱(XPS)、O_2-程序升温脱附(O_2-TPD)等技术对所制催化剂进行结构和织构表征,并对其催化氧化CO及乙酸乙酯活性进行了评价。结果表明,OL具有典型的层状锰氧化物结构,适量掺杂Cu对OL的结构和织构影响不大,但Cu的掺杂明显影响Cu_x/OL的还原性、氧移动性及催化剂表面Cu~(2+)/CuO、(Mn~(2+)+Mn~(3+))/Mn~(4+)和Oads/Olatt的比例。Cu_x/OL的催化性能与以上因素密切相关。在Cu_x/OL样品中,Cu_5/OL催化剂具有最佳的催化活性(CO催化氧化,T_(50)=70°C和T_(90)=100°C;乙酸乙酯催化氧化T50=160°C,T90=200°C)。同时,Cu_5/OL催化剂具有最佳的还原性能、氧移动性能和最多的Cu~(2+)、(Mn~(2+)+Mn~(3+))和表面吸附氧浓度。Cu_x/OL催化性能与铜锰之间相互作用、还原性和氧移动性能密切相关。  相似文献   

14.
达建文  丁雪加 《分子催化》1993,7(3):227-232
碱土金属氧化物或碳酸盐为多种类型甲烷氧化偶联制取C_2烃催化剂的重要组分之一.有关纯碱土金属氧化物及含氧酸盐的研究表明,这类化合物具有较强的表面碱性及高温P型半导性而对活化甲烷生成C_2烃有较高活性,关于不同碱土金属化合物之间混合形成的二元碱土金属复合体系催化剂的报导仍不多见,Aika等人曾报导用BaO与CaO或MgO混合的催化剂上在1073K时可以获得61.1%C_2烃选择性和14.2%的C_2烃收率,但BaO易在反应条件下与水反应生成Ba(OH)_2而腐蚀器壁,不利于长期操作.本文报导了一系列不同碱土金属化合物之间形成的二元碱土复合体系催化剂上甲烷氧化偶联的反应结果.结果表明,这类催化剂由于其结构稳定、活性好而值得进一步研究.  相似文献   

15.
采用新型无模板草酸盐路线制备了系列不同Cu含量的MnO_x催化剂(MnO_x、Cu1-MnO_x、Cu2-MnO_x、Cu3-MnO_x、Cu4-MnO_x、Cu2-450及Cu2-550),并应用于1,2,3,4-四氢喹啉(THQL)氧化脱氢芳构化。通过热重和热流分析(TG-DSC)、X射线衍射(XRD)、N2物理吸附-脱附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)、原子吸收光谱(AAS)手段对催化剂进行表征。结果显示在这七种锰氧化物中,Cu2-MnO_x具有高比表面积、增大的介孔平均孔径、较低的还原温度、最高的Mn~(3+)含量和吸附氧含量,最高的Mn~(3+)/Mn~(4+)。Cu2-MnO_x在温和的反应条件下,以廉价的空气为氧化剂、无碱添加剂的情况下对THQL芳构化转化率和喹啉(QL)选择性分别达99.1%、97.2%。催化剂套用五次后转化率还可达95.8%,选择性随着套用次数增加略有降低,这可能是Cu元素的流失所致。催化剂无定型结构、Mn~(3+)和吸附氧含量,Mn~(3+)/Mn~(4+)、晶格氧的流动性及CuO和MnO_x的协同作用是高催化活性的关键因素。  相似文献   

16.
大气中CO_2浓度增加导致的温室效应以及化石燃料的匮乏正日益受到世界范围的关注.由于CO_2较强的惰性以及较高C–C偶联能垒,迄今为止大部分研究都集中在CO_2催化加氢制备各种C1化学品(如CH_4,CH3OH,CO等),鲜有研究关注合成液态燃料(C_(5+)碳氢化合物).目前,CO_2加氢直接合成烃类主要通过CO_2基费托合成反应(CO_2-FTS)实现,即先通过逆水煤气变换反应(RWGS)将CO_2还原成CO,随后CO通过传统费托反应(FTS)加氢生成烃类化合物.在两种工业化FTS催化剂(Fe和Co基催化剂)中,钴基催化剂具有更高的反应活性和链增长能力,以及较高的机械强度和稳定性.然而,由于CO_2的惰性,造成催化剂表面物种的加氢程度更高,使得甲烷更容易生成.因而,高反应活性、高选择性催化剂的开发是实现该过程的关键.本文采用沉积沉淀法制备了一系列双金属CoCu/TiO_2催化剂,再通过初湿浸渍法对其进行碱金属助剂(Li,Na,K,Rb和Cs)改性,并用多种表征手段系统研究了碱金属助剂对催化剂物化性质及其催化CO_2加氢制备长链烃反应的影响.结果表明,碱金属的加入对催化剂织构性质影响不大,它们在催化剂表面发生富集,且富集程度随碱金属原子序数的增加而降低.另外,碱金属的加入增强了CO_2的吸附,其中,Na改性的CoCu/TiO_2催化剂的碱性最强;同时还降低了H_2的脱附量,尤以K,Rb和Cs改性的催化剂为甚.在250 ℃,5 MPa,空速3000 mL·g_(cat)~(–1)·h~(–1)和H_2/CO_2=3的反应条件下,对不同碱金属助剂改性的催化剂进行评价.结果表明,不加助剂的CoCu/TiO_2催化剂上CO_2转化率高达23.1%,但产物主要是CH_4,此时CO_2在Co活性中心上直接发生甲烷化反应;碱金属助剂的引入显著抑制了CH_4的生成,提高了长链烃的选择性,但同时也降低了CO_2转化率,并且随着碱金属原子序数增大呈现先下降后上升的趋势,表明合适的碱性强度可以更好地改性催化剂性能.其中,Na助剂改性的CoCu/TiO_2催化剂的碱性最强,且H_2的脱附量降低幅度较小,因此,该催化剂具有最高的C_(5+)烃类收率,达到5.4%;同时CO_2转化率为18.4%,烃类产物中C_(5+)烃类选择性为42.1%.Na助剂改性的CoCu/TiO_2催化剂还展现了良好的催化稳定性,反应200 h后,CO_2转化率和C_(5+)选择性分别保持18%和40%.基于碱金属助剂对催化剂物化性质与反应性能的调变规律,可进一步指导CO_2加氢直接合成长链碳催化剂的设计与合成.  相似文献   

17.
甲烷在W-Mn体系催化剂上氧化偶联制乙烯   总被引:24,自引:8,他引:24  
本文报导了w-Mn体系催化剂的甲烷氧化偶联反应性能,详细考察了反应条件对1.9wt%Mn—5wt%Na_2WO_4/SiO_2(W—34)催化剂反应性能的影响,并用XRD、BET、EPR、UV-DRS等方法对该催化剂进行了表征。结果表明,该催化剂具有较好的甲烷氧化偶联反应性能,在T=800C,甲烷空速=36,000ml·g~(-1)·h~(-1),CH_4:O_2:N_2=3:1:2.6的最佳实验条件下,其甲烷转化率为36.8%,C_2烃收率达到23.9%;研究还表明,C_2H_6,CO_2是CH_1氧化的一次产物,C_2H_4主要由C_2H_6脱氢而来,而CO则可能主要来源于C_2烃的表面深度氧化,催化剂的结构研究表明,在该催化剂中,w是以Na_2WO_4形式存在,Mn则以Mn_2O_3形式存在,而SiO_2已由无定型结构转变成u-方石英;W、Mn、Si之间没有形成新的化合物。  相似文献   

18.
丙烯是仅次于乙烯的重要有机化工基础原料,广泛应用于生产聚丙烯、丙烯醛、丙烯酸、甘油、异丙醇、聚丙烯氰、丁辛醇等化工产品.近年来,随着市场经济的发展,丙烯下游产品的需求量迅速上涨,极大地促进了全球对丙烯的需求.负载型氧化基催化剂因其良好的催化性能和低廉的生产成本而被广泛应用于低碳烷烃脱氢反应中,Catofin,Linde及FBD工艺使用的就是Cr_2O_3/γ-Al_2O_3催化剂.丙烷脱氢过程中,担载型氧化铬催化剂Cr物种的价态、配位结构及与载体之间的相互作用会影响其催化性能.催化反应过程中,丙烷分子吸附在Cr-O上进行活化反应,因而研究清楚催化剂的活性物种是非常重要的.综合文献,一部分研究者认为Cr~(6+)为反应的活性中心,在反应初期与丙烷接触立即被还原为活性比较弱的Cr~(3+).随着原位表征技术的发展,一些研究者认为,八面体配位结构的Cr~(3+)物种为催化反应的活性中心,四面体配位结构的Cr~(6+)仅仅是Cr~(3+)活性物种的前驱体,而且Cr~(6+)并没有被发现具有催化活性.但何种Cr物种是脱氢活性中心,至今仍没有一致结论,这是值得继续关注和解决的问题.同时,浸渍法制备催化剂的过程中,金属前驱体、浸渍溶剂、干燥时间、干燥温度及焙烧时间和温度等因素会影响所制备催化剂的催化活性.我们采用等体积浸渍法制备催化剂,并用饱和乙醇蒸气对其进行预处理,以丙烷脱氢为探针反应研究了预处理对催化剂脱氢反应性能的影响,采用X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(H_2-TPR)、X射线光电子能谱(XPS)和紫外-可见光谱(UV-Vis)等表征手段,揭示催化反应的活性中心及反应机理.在无氧脱氢反应中,经过乙醇蒸气预处理的催化剂CrH-Et催化活性稍高于原始催化剂CrH.在二氧化碳参与的反应中,催化剂CrH-Et催化活性远远高于CrH.当C_3H_8:CO_2:He=1:5:4时达到最佳效果,CrH-Et的丙烷转化率为41.4%,丙烯选择性为84.8%,同样条件下CrH的催化活性和丙烯选择性分别为28.0%和85.9%.但是乙醇作为浸渍溶剂,对催化剂并没有促进作用.XRD和TEM结果表明,Cr均匀分散在载体表面,Cr粒子簇的大小并不影响催化剂的催化活性.H_2-TPR,XPS和UV-Vis结果说明,经过乙醇蒸气预处理后催化剂中的Cr~(6+)被还原成低价Cr,因而可以证明Cr~(6+)不是催化剂的活性中心.Cr~(3+)作为活性中心而存在,Cr~(6+)仅作为活性组分的前驱体而存在.而在反应过程中,Cr~(3+)容易被反应中生成的H_2还原成非活性组分.相对于催化剂CrH,经过乙醇蒸气预处理的催化剂(CrH-Et)上部分还原后的低价Cr更容易被CO_2重新氧化成Cr~(6+).即在反应过程中,CrH-Et能保持相对CrH更多的活性组分,因而保持更高的催化活性.  相似文献   

19.
报道了La-Ba-Sn(sm,Ce)体系催化剂上甲烷氧化偶联反应(OCM)的催化性能.实验结果表明:第三组分Sn、Sm、Ce的添加显著提高了OCM催化活性和C2烃选择性.不同催化剂制备方法对催化活性的影响不同,混浆法低温焙烧有利于低温OCM反应;干混法高温焙烧能在最佳OCM反应条件下获得较高的C2烃收率和选择性.  相似文献   

20.
在能源需求不断上涨及石油供应日益紧张的背景下,开展对煤、天然气或生物质等非油基资源(CO、CO_2、CH_3OH、CH_4等)的高效利用显得尤为重要。C_1小分子(CO、CO_2、CH_3OH、CH_4等)经催化转化可得到燃料及多种化学品,一直受到学术界及工业界的广泛关注。甲烷/甲醇作为重要的C_1平台分子,其催化转化在C_1化学中占据重要地位。为了提高目标产物的选择性,需要有效地控制甲烷/甲醇中C―H键的活化。传统热催化作为甲烷/甲醇最常见的转化方法发展已久,但仍然面临着反应条件苛刻、能耗大、产率和选择性低等问题。光催化反应通过引入光能弥补反应中吉布斯自由能的上升,同时具有反应条件温和、操作简单、能耗低等特点,从而为甲烷/甲醇转化提供了新的途径。通过调节光的波长、强度以及催化剂的氧化能力可以实现甲烷/甲醇的选择性转化,减少副产物的生成。此外,光催化能够选择性活化甲醇的C―H键而非O―H键,从而实现甲醇的C―C偶联反应。本文主要围绕甲烷/甲醇的重整、氧化和偶联反应,总结近年来的光催化转化进展,并对进一步提高光催化性能做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号