首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary The extraction of fifteen polymer additives which are used as antioxidants, uv stabilizers, process lubes, flame retardants, and antistats from eight formulations of polystyrene is demonstrated with supercritical carbon dioxide and compared to traditional dissolution/precipitation extractions. The purpose of the study was two fold: 1) the development of a high performance liquid chromatography method(s) for the additives and 2) the determination of the viability of supercritical fluids for extraction of the additives from polystyrene. Nine of the additives were assayed via reversed phase liquid chromatography while, the remaining six additives could not be assayed in this manner. In order to develop an extraction method for the additives, the effects of static extraction time, CO2 density, and temperature were first investigated. These preliminary extractions revealed that a static period which afforded an opportunity for the polymer to swell combined with a high CO2 density and temperature above the polymer glass transition yielded quantitative recoveries of the additives. Triplicate extractions of the various polystyrene formulations matched additive recoveries obtained by the traditional dissolution/precipitation method but the former method was faster and used less organic solvent.  相似文献   

2.
Different procedures were examined to extract pure and high concentrations of a series of brominated flame retardants from various polymer materials. These procedures include supercritical carbon dioxide (sc-CO2), modified sc-CO2, solvent and soxhlet extraction. Extraction with sc-CO2 gave low extraction efficiencies (between 6 and 20%) probably due to the low pressure of sc-CO2 used. The use of toluene, acetonitrile and THF as modifier in sc-CO2 raised the extraction efficiencies for many flame retardants. High extraction efficiencies were achieved for tetrabromobisphenol A (TBBPA), TBBPA-bis-(2,3-dibromopropylether) (TBBPA-dbp), TBBPA-carbonatoligomer (TBBPA-co) and decabromodiphenylether (DECA) (between 93 and 100%) by using 1-propanol as solvent during soxhlet extraction. Toluene instead of 1-propanol was used where insufficient extraction of the flame retardant occurred. The materials (before and after extraction) were analysed with energy dispersive X-ray fluorescence analysis (EDXRF), high performance liquid chromatography with ultraviolet detection (HPLC/UV), gas chromatography/mass spectrometry (GC/MS) and infrared spectroscopy (IR) techniques. The properties of the extracted flame retardants such as TBBPA, TBBPA-dbp and 1,2-bis(tribromophenoxy)-ethane (TBPE) are in good agreement with those of standard reference materials.  相似文献   

3.
Supercritical fluid was used to extract volatile components from the rhizoma of Atractylode lancea (A. lancea). An orthogonal array design (OAD), L9 (3)4, was employed as a chemometric method for the optimization of the supercritical fluid extraction (SFE) of volatile compounds from the herbal medicine. Four parameters, namely, pressure, temperature, dynamic extraction time, and flow rate of CO2, were studied and optimized by a three‐level OAD in which the interactions between the parameters were neglected. These compounds were identified according to their retention times and mass spectra by GC–MS. A total of 30 compounds of SFE extracts were identified. Atractylon (8.63%), hinesol (1.44%), β‐eudesmol (6.64%), elemol (0.42%), and atractydin (13.92%) were the major sesquiterpenes identified in A. lancea SFE extracts.  相似文献   

4.
This paper reports on the use of supercritical carbon dioxide to fractionate a low molecular weight, high density polyethylene into very narrow molecular weight distributions (MWDs). A simple extraction system was developed that allowed relatively trouble free extractions of the polyethylene samples. Fractions were collected at successively higher densities of CO2 at constant temperature and then analyzed by capillary supercritical fluid chromatography (SFC), or high temperature gel permeation chromatography (GPC) and/or differential scanning calorimetry (DSC). Fractionations were performed at three different temperatures (60,80, and 100°C). Higher temperatures were found to yield greater recoveries and higher MWDs at any given density. Reducing the increment between successive extraction steps resulted in polydispersities being reduced to nearly “monodisperse” levels. Total recoveries ranged from 12 to 33% depending on the temperature, and the highest molecular weight fraction extracted by the CO2 was centered around 1500.  相似文献   

5.
《Analytical letters》2012,45(14):2561-2574
Abstract

An HPLC detector was modified to operate as a low pressure on-line supercritical fluid extraction detector. Spectra of CO2 and fluorene are presented of pressures ranging from 85 to 150 atm. Both the intensity and emission wavelength of fluorene were effected by CO2 pressure. As pressure increased, the emission intensity also increased and the emission shifted to a shorter wavelength. The intensity of CO2 emission decreased by increasing pressure. The emission wavelength of CO2 was unaffected by pressure. A detection limit for fluorene was found to be 5 μg per extraction. The minimal detectable mass was 25 μg (± 8% RSD) per extraction.  相似文献   

6.
The volatile components of Cnidium monnieri were obtained by supercritical fluid extraction (SFE) and analyzed by GC‐MS (identification and determination of metabolites). The compounds were identified according to their retention times and mass spectra. The effects of different parameters, such as extraction pressure, temperature, dynamic extraction time, flow rate of CO2, on the SFE of C. monnieri extracts were investigated. A total of 14 compounds of SFE extracts were identified. Osthole (69.52%), bornyl acetate (10.03%), α‐pinene (4.71%), and imperatorin (2.42%) were the major compounds identified in C. monnieri SFE extracts. The quantitation of osthole and imperatorin were then accomplished. The linear calibration ranges were all 5–1000 μg/mL for osthole and imperatorin by GC‐MS analysis. The recovery of osthole and imperatorin were in the range 96.5–101.8%. The LODs for osthole and imperatorin were 1.0 and 0.6 μg/mL, respectively.  相似文献   

7.
Polyether nitrile and polyether nitrile copolymers with pendant methyl groups were prepared by the nucleophilic substitution reaction of 2,6-dichlorobenzonitrile with hydroquinone (HQ) and with varying mole proportions of HQ and methyl hydroquinone (MeHQ) using N-methyl pyrrolidone solvent in the presence of anhydrous K2CO3. The polymers were characterised by different physico-chemical techniques. The crystallinity of the polymers was found to decrease with increase in concentration of the MeHQ units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 450 °C with a char yield above 50% at 900 °C in N2 atmosphere. The glass transition temperature and activation energy of the polymers was found to increase with increase in concentration of the MeHQ units in the polymer.  相似文献   

8.
《Analytical letters》2012,45(17):3208-3218
Abstract

A method for the detection of microcystins (microcystin LR, RR, and YR) in cyanobacteria by supercritical fluid extraction (SFE) and liquid chromatography‐mass spectrometry (LC/MS) has been developed. Supercritical fluids for the analytical extraction of nonvolatile, higher molecular weight compound, and microcystins from cyanobacteria were investigated. The microcystins included in this study are sparsely soluble in neat supercritical fluid CO2. However, the microcystins was successfully extracted with a ternary mixture (90% CO2, 9.5% methanol, 0.5% water) at 40°C and 250 atm. The polar carbon dioxide‐aqueous methanol fluid system gave high extraction efficiency for the extraction of the polar microcystins from cyanobacteria. The microcystins were determined by liquid chromatography‐tandem mass spectrometry (LC/MS/MS).  相似文献   

9.
A new strategy for supercritical fluid extraction of copper ions   总被引:8,自引:0,他引:8  
Liu J  Wang W  Li G 《Talanta》2001,53(6):827-1154
Complexation combined with supercritical fluid extraction was used to extract Cu2+. The effects of pressure, temperature, and total volume of CO2 on the efficiency of extraction were systematically investigated. The extraction recovery was low (57.32%) only by pure supercritical CO2. Addition of a suitable amount of methanol (v/v=5%) to supercritical CO2 could enhance the extraction of Cu2+ (72.69%, relative standard deviation (R.S.D.)=2.12%, n=3), and the recovery increased largely (90.52%, R.S.D.=2.20%, n=3) in the presence of nonionic surfactant Triton X-100. Reverse micelle formation is presented as a new strategy of improving the extraction of metal ions with supercritical CO2 in this paper.  相似文献   

10.
Chiu KH  Yak HK  Wai CM  Lang Q 《Talanta》2005,65(1):149-154
Packed in a high-pressure vessel and under calculated conditions, dry ice can be used as a source of carbon dioxide for supercritical CO2 extraction or liquid CO2 of organic compounds from environmental samples. Coupled with a fluid modifier such as toluene, dry ice-originated supercritical CO2 (Sc CO2) achieves quantitative extraction of many volatile organic compounds (VOCs) and semivolatile organic compounds (SOCs) including polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and polychlorinated biphenyls (PCBs) from solid matrices. Compared to contemporary manual or automated supercritical fluid extraction (SFE) technologies, this novel technique simplifies SFE to a minimum requirement by eliminating the need of a high-pressure pump and any electrical peripherals associated with it. This technique is highly suitable to analytical areas where sample preservation is essential but difficult in the sampling field, or where sample collection, sample preparation, and analysis are to be done in the field.  相似文献   

11.
An automated supercritical fluid extraction system was evaluated with polynuclear aromatic hydrocarbons and phenols to demonstrate extraction efficiency, collection efficiency, and sample cross contamination. Results showed that 75/25 glass beads/octadecyl silica provided the highest collection efficiency for these classes of compounds. Also, the automated SFE system was used to study the effect of different percentages of water (w/w) in soil on extraction efficiency of fortified PAH and phenols at different temperatures and pressures. Results showed that the presence of (available) water in soil (>10%) does, increase extraction efficiency of higher molecular weight PAH at higher temperature. Also it was demonstrated that temperature rather than pressure had a marked effect on extraction efficiency. The extraction efficiency of phenols from soil which contained 5% of water, using pure supercritical CO2, was higher than those obtained from dry soil or soil containing 1 % water. Extraction of phenols from soil did not show a dependence on pressure or temperature.  相似文献   

12.
A grafting technique was proposed for the preparation of polymer monolayer on polymeric substrate. On the basis of our recent work on polymer‐supported inhibitor (PSI), hydroquinone (HQ) was first implanted onto polypropylene (PP) surface through UV‐initiated grafting. The resulting immobilized HQ was used as PSI for the thermal‐induced free radical polymerization (FRP) of acrylic acid (AA). The inhibition mechanism was similar to that of free HQ molecule, that is, polymer chain‐carrying radical or peroxy radical could be deactivated by abstracting hydrogen atom from hydroxyl group of immobilized HQ, and the resulting oxyradical (semiquinone radical) combined with another active chain free radical. According to this mechanism, a devised redox initiator consisting of sodium hydrogen sulfite and ammonium persulfate was used to initiate FRP of AA in water at low temperature (50 °C). High crystalline biaxial oriented PP film with HQ immobilized was deliberately laid in this system as a radical trap to capture poly(acrylic acid) (PAA) short chain radical. Through X‐ray photoelectron spectra (XPS) analysis it was found that the atom ratio of CHQ (carbon in HQ) to CCOOH (carbon in COOH) decreased with prolonging polymerization time and became stable after about 30 min. The formed PAA short chain on the surface showed a distribution of monolayer, and the saturated thickness was calculated as 5–7 Å. The degree of polymerization of graft chain in PAA monolayer was estimated as 15–20 through three different models. Relating to surface coverage being 100% in ideal densely packed PAA monolayer, real monolayer surface coverage in such reaction system was estimated as 12.3–18.5%. This method was expected to give us a general approach for constructing kinds of graft polymer monolayer on polymeric substrate, because the involved chemistry was only common inhibition reaction between immobilized inhibitor (HQ) and FRP system in solution (herein redox initiating system of AA). We named this grafting chemistry as confined surface inhibition reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 745–755, 2007  相似文献   

13.
Huang L  Kawi S  Poh C  Hidajat K  Ng SC 《Talanta》2005,66(4):943-951
Extraction of cationic surfactant templates from MCM-41, MCM-48, SBA-1 and SBA-3 has been conducted using CH3OH-modified CO2 supercritical fluid. The supercritical fluid extraction (SFE) has been integrated with thermogravimetry (TG), X-ray diffraction (XRD) and N2 adsorption-desorption to evaluate extraction efficiency and structural stability of mesoporous materials. Experiments of optimization indicate that the conditions of 90 bar, 85 °C, CH3OH/CO2 = 0.1/1.0 ml/min and 3 h are most suitable for the SFE of cationic templates. 76-95% of the cationic templates can be extracted from the mesoporous materials. XRD and N2 adsorption-desorption studies illustrate that SFE possesses some advantages over calcination in maintaining mesoporous uniformity and structural stability when used to remove templates. The impact of curing on mesoporous structure is also dealt with.  相似文献   

14.
Supercritical fluid extraction was coupled directly with high performance liquid chromatograph. The system was evaluated for direct injection of supercritical CO2 and modified supercritical CO2 at high pressure and temperature onto a HPLC system with varying mobile phase compositions and flow rates. Injection of 9 μL supercritical CO2 onto the HPLC using methanol/water mobile phases from 100% methanol to 80% with a flow of 1.0 mL/min did not adversely affect the baseline of UV detector. However at higher percentages of water, CO2 solubility in the mobile phase decreased and caused baseline interferences on the UV detector. At higher HPLC mobile phase flow rates, supercritical CO2 was injected to higher percentages of water without any effect on the UV baseline. Also, increasing the extraction pressure or modifier concentration did not change the results. Separations of polynuclear aromatic hydrocarbons and linear alkenebenzene sulfonate test mixtures were obtained using on-line SFE/HPLC interfaced system.  相似文献   

15.
Beauvericin (BEA), a supercritical fluid extraction with supercritical carbon dioxide from maize was investigated. Extraction efficiencies under several different extraction conditions were examined. Pressure, temperature, extraction time, organic modifier and water matrix content (10%) were investigated. The best extraction conditions were at a temperature of 60 °C, 3200 psi, for 30 min static extraction time and methanol as modifier solvent. Extraction recovery of 36% without modifier by adding water to the matrix in the extraction vessel (reproducibility relative standard deviations (R.S.D.)=3-5%) were recorded. Extraction recovery of 76.9% with methanol as co-solvent (reproducibility R.S.D.=3-5%) was obtained. Data shows that SFE gives a lower BEA recovery compared to conventional extraction protocol with organic solvents while SFE with modifier and conventional extraction yields are comparable. BEA extract contents were determined by high pressure liquid chromatography (HPLC) with a diode array detector (DAD) at 205 nm and BEA peak confirmed by LC-MS. Acetonitrile-water as mobile phase and column C-18 were both tested. Instrumental and analytical parameters were optimized in the range linear interval from 1 to 500 mg kg−1 and reached a detection limit of 2 ng.  相似文献   

16.
X. Ma  X. Yu  Z. Zheng  J. Mao 《Chromatographia》1991,32(1-2):40-44
Summary An analytical supercritical fluid extraction (SFE) technique, followed by GC/MS, was developed to separate and determine the volatile components in Chinese herbal medicine. Three kinds of herbs, frankincense, myrrh, andEvodia rutaecarpa were extracted and analyzed. The extraction was carried out using supercritical fluid CO2 at 20 MPa and 50°C. The main factors affecting the efficiency and selectivity of the extraction are discussed. The results revealed the potential of supercritical fluid extraction as an analytical procedure for the study of medicinal plants.  相似文献   

17.
A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n‐butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO2, extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n‐butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X‐405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples.  相似文献   

18.
Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO2 (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 °C). Under these operating conditions, adding 15% of methylene chloride to the CO2 permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO2), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits ranging from 0.5 to 7.8 ng for 100 mg of spiked material. Concerning the nitrated PAHs, a small addition of acetic acid into pyridine, as cosolvents, gave the best results, leading to fair extraction yields (approximately 60%), with detection limits ranging from 18 to 420 ng.  相似文献   

19.
Supercritical fluid extraction (SFE) of aqueous solutions is often limited by poor mass transport. The performance of a new gas-liquid entraining device was investigated to improve mass transport and thereby increase extraction efficiency. As a test system, iron(III) was extracted from water with a β-diketone chelating agent (HL) and supercritical fluid carbon dioxide. Metal β-diketonate complexes with sufficient solubility in supercritical fluid CO2 are often poorly extracted from aqueous solutions due to limited mass transport between the water-soluble metal ion and the CO2-soluble chelating agent. The new entraining device maximizes contact between the ligand-rich CO2 phase and the metal ion-rich aqueous phase. Iron(III) was extracted from water with the chelating agent 2,2,7-trimethyl-3,5-octanedione (H(tod)) and supercritical fluid CO2 at 60 °C and 20.8 MPa. With entrainment, 79% of the iron was removed from the aqueous phase. This represents a three-fold increase in iron extraction efficiency over that of a static system.  相似文献   

20.
《Analytical letters》2012,45(14):2575-2583
Abstract

A simple heat driven pump for in-the-field supercritical fluid extraction was constructed and evaluated. The pump pressurized CO2 from a standard (54 atm) siphon tube supply cylinder to over 400 atm. Pressurization was achieved and maintained by cyclic heating of a pump chamber containing CO2 to 250°C then cooling and refilling the pump chamber with CO2. The pressurized CO2 was transferred to a heated reservoir from which the CO2 flowed into the extraction cell. Pulse free pressure was maintained in the extraction cell indefinitely at 135 atm with a back pressure regulator. The pressure variation of the solvent delivered to the extraction cell during this period was negligible. The total weight of the system was 5.5 Kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号