首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.  相似文献   

2.
3.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

4.
Time-dependent density functional theory (TDDFT) was combined with the two-body fragment molecular orbital method (FMO2). In this FMO2-TDDFT scheme, the system is divided into fragments, and the electron density for fragments is determined self-consistently. Consequently, only one main fragment of interest and several fragment pairs including it are calculated by TDDFT. To demonstrate the accuracy of FMO2-TDDFT, we computed several low-lying singlet and triplet excited states of solvated phenol and polyalanine using our method and the standard TDDFT for the full system. The BLYP functional with the long-range correction (LC-BLYP) was employed with the 6-31G(*) basis set (some tests were also performed with 6-311G(*), as well as with B3LYP and time-dependent Hartree-Fock). Typically, FMO2-TDDFT reproduced the full TDDFT excitation energies within 0.1 eV, and for one excited state the error was about 0.2 eV. Beside the accurate reproduction of the TDDFT excitation energies, we also automatically get an excitation energy decomposition analysis, which provides the contributions of individual fragments. Finally, the efficiency of our approach was exemplified on the LC-BLYP6-31G(*) calculation of the lowest singlet excitation of the photoactive yellow protein which consists of 1931 atoms, and the obtained value of 3.1 eV is in agreement with the experimental value of 2.8 eV.  相似文献   

5.
6.
Spectroscopic properties of a ground state nonbonded porphine-buckminsterfullerene (H2P...C60) complex are studied in several different relative orientations of C60 with respect to the porphine plane by using the density functional (DFT) and time-dependent density functional (TDDFT) theories. The geometries and electronic structures of the ground states are optimized with the B3LYP and PBE functionals and a SVP basis set. Excitation energies and oscillator strengths are obtained from the TDDFT calculations. The relative orientation of C60 is found to affect the equilibrium distance between H2P and C60 especially in the case of the PBE functional. The excitation energies of different H2P...C60 complexes are found to be practically the same for the same excitations when the B3LYP functional is used but to differ notably when PBE is used in calculations. Existence of the states related to a photoinduced electron transfer within a porphyrin-fullerene dyad is also studied. All calculations predict a formation of an excited charge-transfer complex state, a locally excited donor (porphine) state, as well as a locally excited acceptor (fullerene) state in the investigated H2P...C60 complexes.  相似文献   

7.
The vertical singlet-singlet and singlet-triplet electronic excitation energies of bis(2-phenylpyridinato-)(2,2'-bipyridine)iridium(III) ([Ir(ppy)(2)(bpy)](+)) are calculated on the basis of a comparative quantum chemical study using wave function methods such as CASSCF∕CASPT2 and density functional theory (TDDFT) with local and range-separated functionals. The TDDFT results show a strong dependence of the charge-transfer transition energies on the amount of the exact exchange in the functional. In general, TDDFT with range-separated functionals provides a good agreement with the experimental spectra. As a result a new assignment of the absorption spectrum of the title compound is proposed.  相似文献   

8.
A long-range corrected (LC) time-dependent density functional theory (TDDFT) incorporating relativistic effects with spin-orbit couplings is presented. The relativistic effects are based on the two-component zeroth-order regular approximation Hamiltonian. Before calculating the electronic excitations, we calculated the ionization potentials (IPs) of alkaline metal, alkaline-earth metal, group 12 transition metal, and rare gas atoms as the minus orbital (spinor) energies on the basis of Koopmans' theorem. We found that both long-range exchange and spin-orbit coupling effects are required to obtain Koopmans' IPs, i.e., the orbital (spinor) energies, quantitatively in DFT calculations even for first-row transition metals and systems containing large short-range exchange effects. We then calculated the valence excitations of group 12 transition metal atoms and the Rydberg excitations of rare gas atoms using spin-orbit relativistic LC-TDDFT. We found that the long-range exchange and spin-orbit coupling effects significantly contribute to the electronic spectra of even light atoms if the atoms have low-lying excitations between orbital spinors of quite different electron distributions.  相似文献   

9.
It is well-known that time-dependent density functional theory (TDDFT) yields substantial errors for the excitation energies of charge-transfer (CT) excited states, when approximate standard exchange-correlation (xc) functionals are used, for example, SVWN, BLYP, or B3LYP. Also, the correct 1/R asymptotic behavior of CT states with respect to a distance coordinate R between the separated charges of the CT state is not reproduced by TDDFT employing these xc-functionals. Here, we demonstrate by analysis of the TDDFT equations that the first failure is due to the self-interaction error in the orbital energies from the ground-state DFT calculation, while the latter is a similar self-interaction error in TDDFT arising through the electron transfer in the CT state. Possible correction schemes, such as inclusion of exact Hartree-Fock or exact Kohn-Sham exchange, as well as aspects of the exact xc-functional are discussed in this context. Furthermore, a practical approach is proposed which combines the benefits of TDDFT and configuration interaction singles (CIS) and which does not suffer from electron-transfer self-interaction. The latter approach is applied to a (1,4)-phenylene-linked zincbacteriochlorin-bacteriochlorin complex and to a bacteriochlorophyll-spheroidene complex, in which CT states may play important roles in energy and electron-transfer processes. The errors of TDDFT alone for the CT states are demonstrated, and reasonable estimates for the true excitation energies of these states are given.  相似文献   

10.
The performance of 24 density functionals, including 14 meta-generalized gradient approximation (mGGA) functionals, is assessed for the calculation of vertical excitation energies against an experimental benchmark set comprising 14 small- to medium-sized compounds with 101 total excited states. The experimental benchmark set consists of singlet, triplet, valence, and Rydberg excited states. The global-hybrid (GH) version of the Perdew-Burke-Ernzerhoff GGA density functional (PBE0) is found to offer the best overall performance with a mean absolute error (MAE) of 0.28 eV. The GH-mGGA Minnesota 2006 density functional with 54% Hartree-Fock exchange (M06-2X) gives a lower MAE of 0.26 eV, but this functional encounters some convergence problems in the ground state. The local density approximation functional consisting of the Slater exchange and Volk-Wilk-Nusair correlation functional (SVWN) outperformed all non-GH GGAs tested. The best pure density functional performance is obtained with the local version of the Minnesota 2006 mGGA density functional (M06-L) with an MAE of 0.41 eV.  相似文献   

11.
We report on ab-initio calculations of the electronic structure and optical absorption response of the black dye sensitizer in gas phase. We show that, despite the large size of this molecule, the second-order multiconfiguration quasi-degenerate perturbation theory (MC-QDPT) can be used to calculate vertical excitation energies, oscillator strengths and optical absorption spectra. The zeroth-order reference states entering perturbation calculations are complete active space (CAS) configuration interaction (CI) wave functions computed for 12 active electrons distributed in 12 active orbitals. We found that the CI approach is not enough for taking into account the strong dynamical correlation effects in this system. In fact, the excitation energies of the CAS-CI target states are strongly renormalized by the MC-QDPT calculations. In the calculated absorption spectra, the analysis of the perturbed wavefunctions revealed that the stronger absorption bands correspond to metal-to-ligand and ligand-to-ligand charge transfer processes. Comparison with independent time-dependent extension (TDDFT) calculations performed with different functionals shows that corrections to the long-range behavior of the functional is pivotal to achieve agreement with the MC-QDPT results.  相似文献   

12.
Using a standard exchange-correlation functional, namely, PBE0, the basis set dependence of time-dependent density functional theory (TD-DFT) calculations has been explored using 33 different bases and five organic molecules as test cases. The results obtained show that this functional can provide accurate (i.e., at convergence) results for both valence and low-lying Rydberg excitations if at least one diffuse function for the heavy atoms is included in the basis set. Furthermore, these results are in fairly good agreement with the experimental data and with those delivered by other functionals specifically designed to yield correct asymptotic/long-range behavior. More generally, the PBE0 calculations show that a greater accuracy can be obtained for both Rydberg and valence excitations if they occur at energies below the epsilonHOMO + 1 eV threshold. This latter value is proposed as a thumb rule to verify the accuracy of TD-DFT/PBE0 applications.  相似文献   

13.
Adiabatic time-dependent density functional theory is a powerful method for calculating electronic excitation energies of complex systems, but the quality of the results depends on the choice of approximate density functional. In this article we test two promising new density functionals, M11 and M11-L, against databases of 214 diverse electronic excitation energies, and we compare the results to those for 16 other density functionals of various kinds and to time-dependent Hartree-Fock. Charge transfer excitations are well known to be the hardest challenge for TDDFT. M11 is a long-range-corrected hybrid meta-GGA, and it shows better performance for charge transfer excitations than any of the other functionals except M06-HF, which is a specialized functional that does not do well for valence excitations. Several other long-range-corrected hybrid functionals also do well, and we especially recommend M11, ωB97X, and M06-2X for general spectroscopic applications because they do exceptionally well on ground-state properties as well as excitation energies. Local functionals are preferred for many applications to extended systems because of their significant cost advantage for large systems. M11-L is a dual-range local functional and-unlike all previous local functionals-it has good performance for Rydberg states as well as for valence states. Thus it is highly recommended for excitation energy calculations on extended systems.  相似文献   

14.
Time-dependent density functional theory (TDDFT) calculations show that silicon nanoclusters (Si-NC) capped by linear silane groups have large oscillator strengths of the same magnitude as reported in recent experimental studies. We propose a mechanism where linear silanes attached to the Si-NC surface affect the optical properties enhancing the oscillator strengths and thereby accounting for the bright luminescence observed in the blue region of the visible spectrum. The anisotropic emission seen experimentally can also be explained by the presence of the silane groups on the cluster surface. The excitation energies are found to be only slightly affected by the silanes, whereas the oscillator strengths increase with the length of the silane chain and are significantly larger than obtained for unsubstituted Si-NCs. In TDDFT studies of Si-NC dimers interconnected by a linear silane bridge, we obtained large oscillator strengths indicating that such structures could be useful light sources for optical devices.  相似文献   

15.
The molecular photonics of porphyrins are studied using a combination of first-principle and semi-empirical calculations. The applicability of the approach is demonstrated by calculations on free-base porphyrin, tetraphenylporphyrin, and tetrabenzoporphyrin. The method uses excitation energies and oscillator strengths calculated at the linear-response time-dependent density functional theory (TDDFT) or the corresponding values calculated at the linear-response approximate second-order coupled-cluster (CC2) levels. The lowest singlet excitation energies obtained in the TDDFT and CC2 calculations are 0.0-0.28 eV and 0.18-0.47 eV larger than the experimental values, respectively. The excitation energies for the first triplet state calculated at the TDDFT level are in excellent agreement with experiment, whereas the corresponding CC2 values have larger deviations from experiment of 0.420.66 eV. The matrix elements of the spin-orbit and non-adiabatic coupling operators have been calculated at the semi-empirical intermediate neglect of differential overlap (INDO) level using a spectroscopic parameterization. The calculations yield rate constants for internal conversion and intersystem crossing processes as well as quantum yields for fluorescence and phosphorescence. The main mechanism for the quenching of fluorescence in tetraphenylporphyrin and tetrabenzoporphyrin is the internal conversion, whereas for free-base porphyrin both the internal conversion and the intersystem crossing processes reduce the fluorescence intensity. The phosphorescence is quenched by a fast internal conversion from the triplet to the ground state.  相似文献   

16.
17.
Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength greater than 0.1) in the energy interval of 0-20 eV, which is assigned to a X (3)Sigma(g) (-) to (3)Sigma(u) (-) transition. Furthermore, the oxygen molecule has a rich spectrum in the energy range of 14-20 eV and no spin allowed absorption bands are predicted to be observed in the range of 0-6 eV.  相似文献   

18.
Yilei Wang  Guoshi Wu   《Acta Physico》2007,23(12):1831-1838
A scheme of time-dependent density functional theory (TDDFT) combined with single-excitation configuration interaction (CIS) approach was employed to make a detailed investigation of the emitting energy for fifteen well-known coumarin derivatives. The results showed that the predicted emitting energies as well as the absorption ones were dominated mainly by the exchange-correlation (XC) functional to be used. So long as a functional is properly chosen, the experimental emitting energy of most derivatives can be accurately reproduced within 0.16 eV by a calculation at the TDDFT/6-31G(d)//CIS/3-21G(d) theoretical level. It was found that, nevertheless, the hybrid functional, B3LYP, well predicted the absorption energies for all the fifteen coumarin derivatives but none of the functionals could work equally well for the emitting energy calculations. Two pure functionals, OLYP and BLYP, yield good emitting energies for the 7-aminocoumarins or derivatives with a N atom connected to 7-position, which exhibit inconspicuous charge transfer (CT) in their excited states, whereas the B3LYP hybrid functional, with 20% Hartree-Fock (HF) exchange energy, performs significantly better than OLYP and BLYP for those 3-substituted coumarins with larger CT in excited states. Thus, in comparison with the absorption energies, the selection of proper functionals for the emitting energy calculations becomes more complex. In all probability, it is effective and doable to choose an XC-functional with alterable fraction of HF exchange energy according to the composition and structure characteristics of molecule.  相似文献   

19.
The dipole moments of furan and pyrrole in many electronically excited singlet states have been determined using coupled cluster theory including large one-electron basis sets. The inclusion of connected triple excitations is shown to uniformly decrease the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) excitation energies by 0.04-0.24 eV, with an average reduction of 0.08 eV. Using a basis set larger than DZP (++)D (double-zeta plus polarization augmented with atom- and molecule-centered diffuse functions) uniformly increases the computed EOM-CCSD excitation energies by 0.03-0.29 eV, with an average increase of 0.20 eV. The corresponding shifts in excited-state dipole moments are more erratic. Including connected triple excitations changes the computed dipole moments by an rms amount of 0.17 au. More importantly, using a larger basis set shifts the dipole moments by an rms amount of 0.52 au, with an increase or a decrease being equally likely. The CC dipole moments are compared to those from time-dependent density functional theory (TD-DFT) computed by Burcl, Amos, and Handy [ Chem. Phys. Lett. 2002, 355, 8]. For 29 excited states of furan and pyrrole, the predicted TD-DFT dipole moments differ from the CC results by rms amounts of 1.6 au (HCTH functional) and 1.5 au (B97-1 functional). Including the asymptotic correction to TD-DFT developed by Tozer and Handy [ J. Chem. Phys. 1998, 109, 10180; J. Comput. Chem. 1999, 20, 106] reduces the rms differences for both functionals to 1.2 au. If those Rydberg excited states with very large polarizabilities are excluded, the rms differences from the CC results for the remaining 17 excited states become 1.31 au (HCTH) and 0.88 au (B97-1). For asymptotically corrected functionals and this subset of states, the rms differences from the CC results are only 0.54 au (HCTHc) and 0.34 au (B97-1c). Thus, the Tozer-Handy asymptotic correction for TD-DFT significantly improves the predictions of excited-state dipole moments. For excited states without very large polarizabilities, good agreement is achieved between excited-state dipole moments computed by coupled cluster theory and by the asymptotically corrected B97-1c density functional.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号