首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The primary goal with this work is to create electrically conductive cellulose fibres, this has been done to explore possible new applications for fibre based material. This research uses various methods to create polyelectrolyte multilayers (PEMs) on bleached softwood fibres and on SiO2 model surfaces, by sequentially treating these materials with poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) and poly(allyl amine) (PAH). Paper sheets were then produced from the PEM-modified pulp and evaluated in terms of tensile strength, adsorbed amount of polymer, and electrical conductivity. To evaluate the influence of fibre charge on the measured paper properties, pulps of two different initial fibre charge densities were prepared via carboxymethylation. Because of the bluish colour of PEDOT:PSS, the build-up of PEM could be easily followed, since the fibres grew increasingly darker blue throughout the modification sequence. The conductivity of the fibre network increased by 2−3 orders of magnitude when the pulp of a higher fibre charge density was used. This suggests that it is more important to create a fibrous network with a high fibre-fibre joint strength and a large total joined area in the sheet rather than to maximize the adsorbed amount of PEDOT:PSS. A difference in conductivity could also be noted depending on the polyelectrolyte adsorbed in the outer layer, PAH lowered the conductivity compared to PEDOT:PSS. Evaluating the mechanical properties revealed that the use of PEDOT:PSS reduces the tensile strength of the paper. When five double layers had been adsorbed onto the carboxymethylated sample in which PEDOT:PSS formed the outer layer, calculations indicated a 25% decrease in tensile strength compared to that of reference material without PEMs. ESEM studies indicate that PEM treatment produces a significantly changed and somewhat smoother fibre surface.  相似文献   

2.
The interfibre joint is one of the key elements in creating the strength of self-binding fibrous materials such as paper and board. In order evaluate the strength properties of interfibre joints using direct measurements, a greater understanding on how the mode of loading influences the results is desirable. The methods reported in the literature do not in general distinguish between the contributions of normal and shear stresses in the bonded region. This paper presents a numerical analysis procedure, based on the finite element method, for evaluating interfibre joint strength measurements in terms of the normal, shear, and moment loading components during testing. The target is to estimate the resultant forces and moments, that acts in the interfibre joint region at rupture, of Kraft pulp interfibre joints tested under two principally different modes of loading. The results show that for a typical interfibre joint test, modes of loading other than pure shear cannot, in general, be neglected, and are strongly dependent on the structural geometry of the fibre–fibre crosses. In addition, the resultant forces and moments were scaled in terms of the interface area and the twisting and bending resistance of the interface approximated as an ellipse to account for differences in interface area between the measurements. These scaled resultants were used to quantify how the mode of loading influences the relation between the amount of normal stress and the amount of shear stress that develop in the interfibre joint.  相似文献   

3.
Cationic polyallylamine (PAH), was adsorbed onto lignocellulosic fibres, and a fluorescent label on the polyelectrolyte enabled its location to be shown by confocal fluorescence microscopy. The adsorption time and ionic strength were varied to study their effect on the localisation of the adsorbed PAH. The microscopy showed that a long adsorption time, 24 h, and a high ionic strength, 10−1 M NaCl + 5 × 10−3 M NaHCO3 or higher, resulted in the adsorption of polyallylamine throughout the fibre walls. Shorter adsorption times and/or lower ionic strength resulted in adsorption only to the fibre exterior. By preparing sheets from fibres with polyelectrolyte adsorbed either to the exterior parts or into the fibre cell wall and testing their mechanical behaviour, a link was established between the localisation of adsorbed polyelectrolyte and the mechanical properties. Adsorption to the fibre exterior led to an increase in tensile strength and strain at break. The creep deformation at 90%RH was also slightly reduced by the adsorption of low molecular weight PAH (15 kDa). When polyallylamine was adsorbed throughout the wall of the lignocellulosic fibres, the mechanical properties were not however improved and the creep deformation at 90%RH actually increased somewhat.  相似文献   

4.
Cellulases can be used to modify pulp fibres. For the development of biotechnical applications, a better understanding of the adsorption of cellulases onto commercial wood fibres is needed. In this work, the adsorption behaviour of purified CBH I and EG II on bleached Kraft fibres was investigated. Three variables were studied with respect to their effect on adsorption: fibre type (hardwood or softwood), fibre history (never-dried or once-dried), and ionic strength. The results showed that fibre history had the largest influence on the extent of adsorption of each enzyme. The effect of ionic strength was shown to be dependent on the enzyme and fibre type. At high ionic strength, CBH I exhibited a higher affinity for both once-dried and never-dried fibres at low enzyme concentrations; however, salt was shown to decrease the extent of adsorption at higher enzyme dosages. In contrast, salt increased the maximum adsorption of EG II, most notably on the once-dried hardwood fibres. Fibre type was also shown to affect adsorption behaviour. CBH I had a higher affinity for softwood fibres than for hardwood fibres at low enzyme concentrations. The maximum adsorption of EG II onto once-dried softwood fibres increased by 80% compared to the once-dried hardwood fibres. Interestingly, this did not correlate to in creased fibre hydrolysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Cationic polyelectrolytes (polyallylamine and polyvinylamine with different molecular masses) were adsorbed onto lignocellulosic fibres from unbleached and unbeaten spruce chemical fibres with different kappa numbers to investigate the effects on the mechanical properties of the final paper materials. Adsorption isotherms were first established to determine the maximum quantity of polymer that could be adsorbed onto each type of fibre. Paper sheets were then made with different amounts of added polyelectrolyte, and the structural and mechanical properties of the sheets were investigated, as well as the effect of an extra heating. The use of fibres with different kappa numbers led to different responses in terms of adsorption, and thus to differences in the mechanical properties of the resulting sheets. The tensile strength index was significantly increased (almost 50 % improvement in the best case) as a consequence of this polyelectrolyte adsorption onto the fibres, even at as low an adsorption level as 2 mg/g. The heating of paper sheets for 10 min at 160 °C was also shown to improve the tensile strength index by about 10 % for pulps with high kappa number.  相似文献   

6.
Measurements have been performed to clarify the connection between fibre–fibre joint properties and dimensional stability using laboratory sheets prepared from never-dried fibres, from heavily hornified fibres having a low molecular contact area between the fibres, and from both hornified and never-dried fibres treated with a polyelectrolyte multilayer (PEM) technique to increase the molecular contact area in the fibre–fibre joint. The influence of the drying mode, i.e. whether the sheets are dried freely or under restraint, was also evaluated. The results showed that neither paper strength nor fibre–fibre joint contact area had any significant influence on the dimensional stability of sheets dried under restraint. On the other hand, when the sheets were dried freely, the PEM-treated sheets expanded to the same extent as, or to an even greater extent than the non-PEM-treated sheets, even though they adsorbed less water for a given change in relative humidity. There was also a correlation between drying shrinkage and dimensional stability, where greater shrinkage was associated with a greater hygroexpansion in the freely dried sheets.  相似文献   

7.
This study investigates the adsorption of (glucurono)arabinoxylan (GAX) on cellulose fibres and the properties thereof. A water-soluble GAX, from barley husks (Hordeum vulgare), was isolated using chlorite delignification and alkaline extraction followed by enzymatic purification. The isolated GAX fraction showed an arabinose to xylose ratio of 0.22 and a weight average molar mass of 20,200 g/mol, as determined by size exclusion chromatography (SEC) in DMSO:H2O. The GAX was adsorbed on cellulose fibres under well controlled conditions, where temperature and initial concentration of GAX proved to be important parameters in controlling the level of adsorption. The adsorption process was also dependent on xylan molecular structure. Carbohydrate analysis on the modified fibres showed a preferential adsorption of low substituted xylans (arabinose to xylose ratio of ∼0.10). During the adsorption process the GAX solution was analyzed using SEC-RI-MALLS in aqueous solvent, which demonstrated a molecular xylan adsorption on cellulose fibres. Additionally, a decrease in light scattering responses, which corresponds to an adsorption of aggregated xylan and/or xylan with a great tendency towards self-association, could be observed during the adsorption process. This was demonstrated by adsorption of GAX on regenerated cellulose fibres (Lyocell), which compared to native fibres possesses a relatively smooth fibre surface. Atomic force microscopy analysis visualised a heterogeneous decoration of the Lyocell fibres with xylan agglomerates. The effect of GAX adsorption on paper strength was also investigated. A GAX modified kraft pulp showed an evident increase in tensile strength, which might be due to a retained fibre–fibre bonding ability for xylan coated fibrils after drying and rewetting.  相似文献   

8.
The research reported in this paper demonstrates that the capacity of cotton fibres to adsorb cationic surfactants as well as the rate of the adsorption process can be increased by adsorbing carboxymethyl cellulose (CMC) onto the fibre surfaces; in addition, the adsorption can be restricted to the fibre surface. CMC was deposited by means of adsorption from an aqueous solution. The adsorption of N-cetylpyridinium chloride (CPC) from an aqueous solution onto the CMC-modified fibres was measured using UV-spectrometric determination of the surfactant concentration in the solution. Adsorption onto the cotton fibres was studied in a weakly basic environment (pH 8.5) where cotton fibres are negatively charged and the CPC ion is positively charged. Modification of the fibres by adsorption of CMC introduces new carboxyl groups onto the fibre surfaces, thereby increasing the adsorption capacity of the fibres for CPC. The initial rate of adsorption of CPC increased proportionally with the amount of charge; however, this rate slowed down at high degrees of coverage on fibres with a high charge. The adsorption of cationic surfactant to the anionic surface groups was stoichiometric, with no indication of multilayer or admicelle formation. It was evident that the acidic group content of the fibres was the primary factor determining cationic surfactant adsorption to these fibres.  相似文献   

9.
The adsorption of lignin on cellulose fibres at neutral pH and the effects of calcium ions and a cationic polyelectrolyte (PDADMAC) on the adsorption have been studied. The surface coverage by lignin was determined by electron spectroscopy for chemical analysis (ESCA). The morphology of the lignin layer was studied by atomic force microscopy (AFM). The effect of adsorbed polyelectrolyte and lignin on the strength properties of the paper was also studied. The adsorbed amount of lignin increased monotonically with lignin concentration. Addition of calcium ions resulted in a very high surface coverage by lignin. PDADMAC did not enhance the adsorption of lignin, but without addition of polyelectrolyte the lignin was very weakly attached to the fibre surface. PDADMAC formed complexes with lignin in solution. At high polymer/lignin concentration ratios the charge of the complex was positive and it adsorbed irreversibly as large blobs. At low ratios the complex was easily washed away from the fibre surface. When PDADMAC was pre-adsorbed on the fibre surface the lignin adsorbed as small granules at all lignin concentrations. Neither PDADMAC nor lignin alone increased the strength of pulp sheets significantly. However, together they increased the bonding between fibres.  相似文献   

10.
The aim of this work is to study the influence of low-pressure plasma treatment on cellulose fibres to improve the adhesion between a polymeric matrix and natural fibres used as reinforcement. To evaluate fibre wettability, contact angle measurements were carried out on flax fibres after treatment with plasma under several conditions. Similarly, contact angle measurements were performed without plasma treatment. A comparison between all the samples led to the definition of the optimal plasma treatment conditions. Once the latter were determined, composite materials were prepared with treated and untreated flax fibres and a low-density polyethylene matrix. Composites, with different fibre contents (5 and 40%) and different fibre lengths (1 and 10 mm), were manufactured using a mixer and a hot plate press. The tensile strengths of the composites were assessed to determine optimal fibre content and length, and the plasma treatment effect was also quantified. It was found that the higher the fibre content, the higher the tensile strength, and the higher the Young’s modulus; however, fibre length did not affect tensile strength. Regarding plasma treatment, composites with treated fibres exhibited a considerably improved tensile strength and Young’s modulus. Plasma treatment effects were also studied by X-ray photoelectron spectroscopy and by differential scanning calorimetric. Finally, an analysis of the fibre surface and an interaction study between the matrix and the fibres was conducted with scanning electron microscopy.  相似文献   

11.
In this paper cellulose nanofibrils were used together with a cationic polylelectrolyte, poly(amideamine) epichlorohydrin (PAE), to enhance the wet and the dry strength of paper. The adsorption of nanofibrils and PAE on cellulose model surfaces was studied using quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The differences in fibril and polyelectrolyte adding strategies onto cellulose fibres were studied by comparing layer-structures and nano-aggregates formed by the nanofibrils and PAE. The results showed that when PAE was first adsorbed on the model fibre surface a uniform and viscous layer of nanofibrils could be adsorbed. When PAE and nanofibrils were adsorbed as cationic aggregates a non-uniform and more rigid layer was adsorbed. Paper sheets were prepared using both the bi-layer and nano-aggregate adding strategy of the nanofibrils and PAE. When PAE and nanofibrils were adsorbed on pulp fibres as a bi-layer system significant increase in both wet and dry tensile strength of paper could be achieved even at low added amounts of PAE. When the substances were added as nano-aggregates the improvements in paper strength properties were not as significant. Bulk and surface nitrogen content analyses of the paper samples showed that the adding strategy does not affect the total adsorbed amount of PAE but it has a strong effect on distribution of substances in the paper matrix which has a crucial effect on paper wet and dry strength development.  相似文献   

12.
Adsorption of carboxymethyl cellulose (CMC) as a method to introduce charged (ionizable) groups onto cellulose cotton fibre surfaces was investigated. The method was based on application of a previously published method used for wood fibres. The amount of adsorbed ionizable groups was determined indirectly by analysis of CMC in solution by the phenol–sulphuric acid method and directly by conductometric titration of the fibres. Results from the two methods correlated well. The molecular weight and purity of the CMC had an influence on its adsorption onto cotton; high molecular weight CMC was preferentially adsorbed. The adsorbed charge correlated linearly with the amount of CMC adsorbed. The total charge of the cotton fibres could be increased by more than 50% by adsorption of CMC. It is expected that this modification procedure can be used in a wide spectrum of practical applications. Lidija Fras Zemljič and Karin Stana-Kleinschek are the members of the European Polysaccharide Network of Excellence (EPNOE).  相似文献   

13.
The effects of enzymatic treatments of dissolved and colloidalsubstances (DCS) released from thermomechanical pulp (TMP) have beeninvestigated. A model dispersion of DCS was made by leaching several portionsofTMP in distilled water and separating the fibrous material. Some samples wereenriched in colloidal particles by removing dissolved substances usingultra-filtration. The DCS, which had been subjected to different enzymatictreatments, were added in a fixed quantity to TMP fines that had been madecationic, and were subsequently used to form handsheets. All DCS additionsincreased the content of lipophilic extractives in the sheets. Lipase gave acomplete hydrolysation of triglycerides into free fatty acids. The untreatedDCSgave no significant decrease in tensile strength, because of the relativelysmall addition. A treatment of the DCS with Lipase gave a higher extractivescontent and a tensile strength on the same level as the reference. A Mannanasetreatment gave a decrease in strength compared with the reference at the sameamount of extractives in the sheet. A combined treatment with Mannanase andLipase gave a more pronounced decrease in tensile strength. Two possiblereasonsfor the differences in strength at a given amount of extractives weresuggested:(i) the destabilisation of the colloidal wood extractivesdue to the Mannanase could affect the distribution of the colloid in the sheet,making it more detrimental to sheet strength compared with the stable colloid.This would account for the observation that Lipase did not affect sheetstrengthas such, but the combination with Mannanase gave the lowest tensilestrength; (ii) the decomposition of galactoglucomannans in aqueoussolution would diminish their positive effect on tensile strength and/or affectthe adsorption of the colloid. A reflectometry technique was used to quantifythe adsorption of the differently treated DCS onto a model surface of thecationic fines. Colloidal wood extractives were identified on the surfacesafteradsorption using staining and light microscopy. No variations in adsorbedamounts were found that could explain the differences in sheet strength, whichindirectly suggests that the distribution of the colloid over the surface wasaffecting the ability of a strong bonded joint to be formed between two suchsurfaces.  相似文献   

14.
To address the deficiencies of benzophenone UV screens for preventing brightness reversion in high yield mechanical papers, we synthesized a new series of such materials with enhanced water solubility and compatibility with the lignocellulosic substrate. A series of 2,4-dihydroxybenzophenones (DHB) were synthesized containing various Mannich bases at the C3 position of one of its rings. They possess the UV-screening ability of o-hydroxylbenzophenones, and they also contain tertiary nitrogen atoms that may function as radical scavengers. Aqueous solutions of the hydrochloride salt of 3-(dimethylaminomethylene)-2,4-dihydroxylbenzophenone (1), when applied on bleached chemithermomechanical pulp (CTMP) sheets, were significantly more efficient in preventing photoyellowing than the original DHB applied on the sheets from ethanol-water solutions. This confirmed our original hypothesis that increasing the compatibility of the UV screen with the lignocellulosic matrix would increase its efficiency in preventing photoyellowing. Compound 1, however, was found to be somewhat more effective than its hydrochloride salt toward preventing photoyellowing. This was attributed to the synergistic action of the free tertiary aminic center attached on the molecule with its UV-screening ability. To comprehend further the various parameters that influence the photoyellowing inhibition performance of these compounds and DHB with bleached CTMP pulp fibers, a series of handsheets were prepared at different pH. The interactions of the protonated compound 1 with pulp fibers were then evaluated by studying their kinetics of absorption and desorption to and from the fiber matrix. This part of our study found that the adsorption of protonated Mannich derivatives of DHB onto pulp is most likely governed by a cation-exchange mechanism involving the cationic amine group with the sulfonic and carboxylic acid groups located on the surface of the fibers. The pH the paper sheet was made from was also found to affect profoundly the adsorption and retention characteristics of these compounds onto the lignocellulosic matrix.  相似文献   

15.
It has been shown, in the present investigation, that the two methods used to investigate the pore size distribution of unbleached chemical pulps, i.e. inverse size exclusion chromatography (ISEC) and nuclear magnetic resonance (NMR), give different average pore radius for the pores inside the fibre wall. This is due to the way in which these experiments are performed and the sensitivity of the methods to different types of pores in the cell wall. It was also shown that the two methods gave different results when changing the pH and the ionic strength of the pulp suspension. The pore radius, as detected with ISEC, decreased with both increasing ionic strength and decreasing pH, indicating a loose structure of the exterior of the fibrillar network. However, the pore radius as detected with NMR, was virtually unaffected when increasing the ionic strength, indicating a very rigid structure of the interior of the fibre wall. Decreasing pH though, lead to a decrease in pore radius indicating that upon protonation of the carboxylic groups in the fibre wall, the electrostatic repulsion is diminished and the average pore radius decreases. The NMR technique was also used to study wet strength aid penetration into the fibre wall. It was shown that wet strength aids with a small molecular weight, penetrated the fibre wall, as detected by a decrease in pore radius. It was also shown that addition of different wet strength aids increased the tensile index of the sheet and decreased the fibre strength, measured as zero span-strength of the sheets.  相似文献   

16.
This work investigated the effect of using Kenaf bast fibre kraft pulps compared to Scotch Pine kraft pulps for producing microfibrillated cellulose (MFC) and its employment for improving mechanical and physical properties of handsheets made from unbleached kraft hardwood pulp. It was shown that MFC based on Kenaf fibres can be produced at higher consistencies [>5 % (w/w)] compared to when Scotch Pine is employed [≈2 % (w/w)] as raw material. The possibility of using a higher consistency when processing Kenaf is beneficial for the processing in microfluidizers. The rheological properties of the products were shown to be consistent with what is known for MFC-based systems. The studies indicate that the mechanical properties of handsheets from unbleached kraft hardwood pulp can be improved by replacing part of the unbleached kraft hardwood pulp fibres with either unbleached kraft Kenaf pulp or unbleached Scotch Pine kraft pulp. However, the same levels of improvements were obtained when using only a small amount [≈6 % (w/w)] of MFC based on Kenaf or Scotch Pine, when introduced into the system either as a dry strength additive or by coating pre-made handsheets. Finally, it was shown that the incorporation of MFC in handsheets decreases the air-permeability; this effect became amplified when the MFC was applied as a coating onto the handsheets.  相似文献   

17.
The initial dimensional stability of paper measured as hydroexpansion, i.e. when paper is exposed to liquid water, has been considerably improved by combining a periodate-oxidation-induced cross-linking of the fibre wall with the subsequent adsorption of a hydrophobic polyelectrolyte multilayer consisting of three layers of poly(allylamine hydrochloride) and two layers of poly(acrylic acid). This reduced the rate of diffusion of water into the fibre wall at the same time as the diffusion distance was increased, i.e. the water has to diffuse all the way from the top of the sheet and not only from the individual fibre surfaces since capillary absorption was prevented. However, as a consequence, the hydrophobic sheets present a greater expansion maximum before contraction. It is suggested that this may be due to a higher moisture content in the top fibre layers of the hydrophobically modified papers than in the hydrophilic sheets, since all the water is concentrated to the top fibre layers of the hydrophobic papers. Sheets made from bleached kraft pulp or thermo-mechanical pulp as well as model sheets made from microfibrillated cellulose (MFC) were studied. The MFC-sheets were intended as a model of the fibre wall, i.e. a sheet without any fibre joints. The behaviour of the MFC-sheets was similar to that of ordinary sheets when subjected to water, which indicates that the properties of the fibre joints do not affect the hydroexpansion to any great content and that the expansion of the paper is directly linked to the expansion of the fibre wall.  相似文献   

18.
Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spec-troscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-by-layber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex films is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS com-plex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.  相似文献   

19.
An industrial calcium sulfite pulp was fractionated in a hydrocyclone to four fractions that differed in dimensions and composition due to differences in density. The intention was to investigate whether the fibre dimensions had any influence on the properties of carboxymethyl cellulose (CMC) produced from the fractions and especially how the properties of the unreacted material differed. It was surprisingly found that the fraction containing thin-walled fibres gave CMC and dissolved residuals in the CMC-solution that had the lowest degree of substitution (DS). It was therefore believed that the thin-walled fibres were collapsed and more closely bound in the fibre network after drying of the pulp and that this impeded the chemical diffusion in the subsequent CMC-process, i.e. the diffusion of the CMC-chemicals into the cell wall was slower. There was thus a correlation between thinner fibres and a lower degree of substitution for CMC made from such fibres. It was also found that tick-walled fibres had a higher degree of substitution than the thin-walled fibres but that the highest degree of substitution was obtained if a mixture of thin- and thick-walled fibres were used.  相似文献   

20.
In this paper the influence of charged species on the sheet strength of viscose fibres was investigated. Four samples of chemical modified viscose fibres, as well as a reference fibre were studied. The swelling of these viscose fibres and the breaking length of hand sheets have been determined. Comparing the results, the influence of both, swelling and surface charge on the bonding force, is evident. The allocation of the charges, induced by cationic starch and Carboxmethylcellulose, has been analyzed by Titration, attenuated total reflection spectroscopy (ATR) and X-ray photoelectron spectroscopy (XPS). Titration was used to make a first estimation of the charge distribution within the fibre. Using ATR and XPS, more detailed information about the surface charge has been achieved. All measurement methods showed a significant amount of charge on the fibre surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号