首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new substituted triphenylamine (TPA) derivatives with alkyl thieno[3,2-b]thiophene and thiophene units were synthesized in a combinatorial manner. Suzuki coupling of a dioxaborolane TPA derivative and 2-bromo-3-nonylthieno[3,2-b]thiophene or Stille coupling of fresh stannyl thieno[3,2-b]thiophene was used. All compounds were characterized by 1H and 13C NMR, HRMS, UV-vis spectrometry and DSC measurements. It was demonstrated that the optical and thermal properties of these materials can be tuned by varying both the conjugation length and thienothiophene and thiophene combination on the TPA branches. Moreover, the measured molar extinction coefficients were increasing from 63,000 (λmax = 354 nm) to 131,000 L mol−1 cm−1 (λmax = 428 nm) for TPA-thienothiophenes and TPA-bithiophene thienothiophenes, respectively. Some of them showed molecular glass behavior.  相似文献   

2.
Ruthenium(II), copper(I) and silver(I) complexes of large bite bisphosphinite Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2 (1) are described. Reactions of bisphosphinite 1 with [Ru(η6-p-cymene)(μ-Cl)Cl]2 and RuCl2(PPh3)3 afford mono- and bis-chelate complexes [RuCl(η6-p-cymene){η2-Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2-κP,κP}]Cl (2) and trans-[RuCl22-Ph2P{(-OC10H6)(μ-CH2)(C10H6O-)}PPh2-κP,κP}2] (3), respectively. Treatment of 1 with CuX (X = Cl, Br and I) furnish 10-membered chelate complexes of the type [Cu(X){η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}] (4, X = Cl; 5, X = Br; 6, X = I), whereas [Cu(MeCN)4]PF6 affords a bis-chelated cationic complex [Cu{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}2][PF6] (7). Reaction between 1 and AgOTf produce both mono- and bis-chelated complexes [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}(SO3CF3)] (8) and [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}2][SO3CF3] (9), respectively; whereas the similar reaction of 1 with[Ag(OTf)PPh3] affords chelate complex of the type [Ag{η2-Ph2P(-OC10H6)(μ-CH2)(C10H6O-)PPh2-κP,κP}(PPh3)(SO3CF3)] (10). All the complexes were characterized by 1H NMR, 31P NMR, elemental analysis and mass spectrometry, including low-temperature NMR studies in the case of silver complexes. The molecular structures of 4 and 6 are determined by X-ray diffraction studies. Ruthenium complexes 2 and 3 promote catalytic hydrogenation of styrene and phenylacetylene with good turnover numbers.  相似文献   

3.
Aryl amines undergo smooth annulation with O-phenylpropynyl sugar aldehyde in the presence of the Ph3PAuCl (10 mol %)/AgSbF6 (10 mol %) catalytic system to afford the corresponding tetrahydro-3aH-spiro[[1,3]dioxolo[4″,5″:4′,5′]furo[3′,2′:5,6]pyrano[4,3-b]quinoline-2,1′-cyclohexane] derivatives in good yields and selectivity.  相似文献   

4.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

5.
New dichloride platinum(II) complexes with 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO) have been synthesized and characterized by thermal analysis, infrared and 1H, 13C, 15N, 195Pt NMR spectroscopy. X-ray crystal structures of cis-PtCl2(NH3)(HmtpO) (1) and cis-PtCl2(HmtpO)2 · 4H2O (2b) were determined to R = 0.0332 and R = 0.0802, respectively. In both complexes the Pt(II) ions have a square-planar geometry with two adjacent corners being occupied by two nitrogens of HmtpO molecules for 2b or NH3 and HmtpO molecules for 1, whereas the remaining adjacent corners are occupied by two chloride anions. Spectroscopic data confirm the square planar geometry with N(3) bonded HmtpO, S-bonded dimethylsulfoxide and two trans chloride anions for trans-PtCl2(dmso) · 4H2O (3).  相似文献   

6.
Mixed ligand silver(I) complexes of triphenylphosphine and thioureas (thiourea (Tu), N-methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu) and N,N′-diethylthiourea (Detu)) with the general formulae, [(Ph3P)2Ag(thione)]NO3 and [(Ph3P)Ag(thione)2]NO3, have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 31P) spectroscopic methods. The crystal structure of one of them has been determined by X-ray crystallography. The spectral data of the complexes are consistent with sulfur coordination of the thiones to silver(I). The single crystal X-ray structure of complex 1, {[Ag(PPh3)(thiourea)(NO3)]2·[Ag(PPh3)(thiourea)]2(NO3)2}, shows that the complex consists of two independent centrosymmetric binuclear units, each having the silver atoms coordinated to one PPh3 and two bridging thiourea molecules. In one of the independent units the silver atom is additionally bound to a nitrate ion, leading to a tetrahedral geometry, while in the other unit the silver atom adopts a trigonal planar environment. Antimicrobial activities of the complexes were evaluated by their minimum inhibitory concentration and the results showed that the complexes show a wide range of activity against two gram-negative bacteria (Escherichiacoli, Pseudomonasaeruginosa) and molds (Aspergillusniger, Penicilliumcitrinum), while the activities were poor against yeasts (Candidaalbicans, Saccharomycescerevisiae). However, the title complex did not show activity against any tested microorganism.  相似文献   

7.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

8.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

9.
The interactions of cyclic trinuclear copper {[3,5-(CF3)2Pz]Cu}3 and silver {[3,5-(CF3)2Pz]Ag}3 complexes with polyhedral borate anions [B10H10]2− and [B12H12]2− in solvents of low-polarity were studied using IR spectroscopy (190-290 K). Two types of complexes were found in solution: {[((3,5-CF3)2PzM)3][BnHn]}2− and {[((3,5-CF3)2PzM)3]2[BnHn]}2− (M = Ag, Cu; n = 10, 12). The stability constants of these complexes were determined from IR-spectra.  相似文献   

10.
Six organophosphine/phosphite stabilized silver(I) complexes of 2-acetyl-1,3-indandione (2-AID) of type Ln·AgC11H7O3 (L = PPh3; n = 1, 2a; n = 2, 2b; L = P(OMe)3; n = 1, 2c; n = 2, 2d; L = P(OEt)3; n = 1, 2e; n = 2, 2f) have been prepared by reacting of [AgC11H7O3], which could be obtained by reacting of 2-AID with AgNO3, with triphenylphosphine, trimethylphosphite, or triethylphosphite in 1:1–2 M ratio. These complexes were obtained in high yields and characterized by elemental analysis, 1H, 13C{H} NMR, IR spectroscopy, and thermal analysis (TG and DSC), respectively. The molecular structure of 2a has been determined by X-ray single crystal analysis in which the silver atom is in a distorted trigonal geometry.  相似文献   

11.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

12.
The reactions of 1 mol equiv. each of [Ru(PPh3)3Cl2] and N-(acetyl)-N′-(5-R-salicylidene)hydrazines (H2ahsR, R = H, OCH3, Cl, Br and NO2) in alcoholic media afford simultaneously two types of complexes having the general formulae [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl]. The complexes have been characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. Molecular structures of [Ru(HahsH)(PPh3)2Cl2] and [Ru(ahsH)(PPh3)2Cl] have been confirmed by X-ray crystallography. In both species, the PPh3 ligands are trans to each other. The bidentate HahsH coordinates to the metal ion via the O atom of the deprotonated amide and the imine–N atom in [Ru(HahsH)(PPh3)2Cl2]. In HahsH, the phenolic OH is involved in a strong intramolecular hydrogen bond with the uncoordinated amide N atom forming a seven-membered ring. In [Ru(ahsH)(PPh3)2Cl], the tridentate ahsH2− binds to the metal ion via the deprotonated amide O, the imine N and the phenolate O atoms. In the electronic spectra, the green [Ru(HahsR)(PPh3)2Cl2] and brown [Ru(ahsR)(PPh3)2Cl] complexes display several absorptions in the ranges 385–283 and 457–269 nm, respectively. Both complexes are low-spin and display rhombic EPR spectra in frozen solutions. Both types of complexes are redox active and display a quasi-reversible ruthenium(III) to ruthenium(II) reduction which is sensitive to the polar effect of the substituent on the chelating ligand. The reduction potentials are in the ranges −0.21 to −0.12 and −0.42 to −0.21 V (versus Ag/AgCl) for [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl], respectively.  相似文献   

13.
A rapid and efficient one-pot three-component protocol for the synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-triones 4 and 1H-pyrazolo[1,2-b]phthalazine-5,10-diones 6 has been developed by domino coupling of phthalhydrazide, 1,3-diketones, and aldehydes under solvent-free conditions at 80 °C as well as under solvent-free ultrasound irradiation at room temperature promoted by (S)-camphorsulfonic acid.  相似文献   

14.
The reaction of [ReOCl3(PPh3)2] with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-trazine (dppt) has been examined and [ReCl3(OPPh3)(dppt)] has been obtained. The triphenylphosphine oxide can be easily replaced by PPh3 in the reaction of [ReCl3(OPPh3)(dppt)] with an excess of triphenylphosphine. The [ReCl3(OPPh3)(dppt)] and [ReCl3(PPh3)(dppt)] complexes have been structurally and spectroscopically characterized. Their molecular orbital diagrams have been calculated with the density functional theory (DFT) method, and their electronic spectra have been discussed on the basis of time-dependent DFT calculations. The compound [ReCl3(OPPh3)(dppt)] has been studied additionally by magnetic measurement. The magnetic behavior is characteristic of mononuclear complexes with d4 low-spin octahedral Re(III) complexes (3T1g ground state) and arise because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives diamagnetic ground state.  相似文献   

15.
A novel pyrimido[4,5-b][1,4]diazepine-2,4,6-trione was synthesized with an efficient strategy. Especially, the key intermediate 2,4-dimethoxypyrimido[4,5-b][1,4]diazepin-6-one was promoted by one pot tandem reduction-cyclization with Na2S2O4. Subsequently, reduction of lactams 6 with LiAlH4 afforded a more flexible scaffold of pyrimidodiazepines. The synthetic strategy was versatile since it facilitated the sequential functionalization on the pyrimidodiazepine at three positions. Thus a convenient and effective method for the rapid preparing of multi-substituted pyrimido[4,5-b][1,4]diazepines was developed.  相似文献   

16.
Carbonylation of the palladium complexes [PdCH3(PP′)Cl] (PP′ = 1a, 1b, 1c, 1d, 1e) and [PdCH3(PP′)(CH3CN)](OTf) was investigated by means of high-pressure NMR with the determination of the half-life times t1/2. The results were rationalized on the basis of the electronic properties of the diphosphines and the nature of the solvento ligand in the first coordination sphere. The crystal structures of the complexes [Pd(1b)Cl2] and [Pd(1b)(H2O)2](OTf)2 are described (1b = 1-(diphenylphosphinomethyl)-2-[bis(3- trifluoromethylphenyl)phosphinomethyl]benzene).  相似文献   

17.
Base promoted and temperature dependent reactions of 3-(2,2-dibromovinyl)quinolin-2(1H)-ones have been described. At 50 °C, the cyclization reactions afforded 2-bromofuro[2,3-b]quinolines in good yields. However, at elevated temperature (80 °C) the domino reaction proceeded affording 2-alkoxyfuro[2,3-b]quinolines via cyclization and nucleophilic substitution reactions.  相似文献   

18.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

19.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

20.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号