首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.  相似文献   

2.
A series of 1-(ferrocenylethyl)-3-substituted-imidazolium salts [3-substitute = 2,6-di(iso-propyl)phenyl (1a), 2,4,6-trimethylphenyl (1b), tert-butyl (1c), 1-Ad (1d), cyclohexyl (1e)] have been synthesized from a racemic ferrocenylethyl acetate and the corresponding N-substituted imidazole in high yields (70–94%). A combination of Pd(OAc)2 and 1a–d was found to form an excellent catalyst system for the Suzuki–Miyaura cross-coupling reactions of aryl bromides with phenylboronic acid in the presence of Cs2CO3.  相似文献   

3.
A series of novel diphosphinoazine rhodium amido carbonyl complexes [{R2PCHC(But)–NNC(But)CH2PR2}Rh(CO)] (R = Ph, Pri, c-C6H11, But) was prepared by deprotonation of cationic diphosphinoazine rhodium amino carbonyl complexes. The complexes were characterized by NMR as were also their precursors. The crystal structures of two cationic and one neutral deprotonated complex were determined by X-ray diffraction showing the complexes to be essentially planar with mutual trans arrangement of phosphine groups and nitrogens trans to carbonyl ligands. Measurement of valence vibration frequencies of carbonyl groups in the complexes allowed to estimate the electron density on the rhodium centre. The ene-hydrazone ligand backbone (nitrogen covalently bonded) is more electron donating than the azine backbone (nitrogen bonded by electron pair donation) as expected. In the neutral series of complexes electron donation increases with phosphine substitution in the order Ph < Pri = c-C6H11 < But with the corresponding decrease of carbonyl valence vibration frequency. The tert-butyl cationic complex undergoes in a low yield an unusual diphosphinoazine bond cleavage with simultaneous oxidation of the metal resulting in a binuclear bis(iminophosphine)dirhodium complex [{(But)2PCH2C(But)NH}Rh(Cl)2(μ-Cl)]2 the structure of which was also determined by X-ray diffraction.  相似文献   

4.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

5.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


6.
L 《Polyhedron》2007,26(18):5513-5518
The Schiff base ligand, 1,2-diaminophenyl-N,N′-bis-(2-pyridinecarboxaldimine), (L) has been synthesized by the reaction of o-phenylenediamine and 2-pyridinecarboxaldehyde, and a series of mononuclear complexes of the type [ML(NO3)2] [M = Co(II), Ni(II), Cu(II) and Zn(II)] has also been synthesized. The formation of the Schiff base ligand (L) and its complexes have been envisaged from IR, 1H and 13C NMR studies. The absorption band observed in the electronic spectra and magnetic moment values confirm an octahedral environment around the metal ion. The molar conductivity measurements confirm the non-ionic character of these complexes. Fluorescence and UV–Vis absorption studies performed on the Cu(II) complex revealed a significant binding ability to DNA.  相似文献   

7.
Vapour–liquid equilibrium data are reported for the ternary tert-butyl methyl ether+tert-butanol+2,2,4-trimethylpentane and the three binary tert-butyl methyl ether+tert-butanol, tert-butyl methyl ether+2,2,4-trimethylpentane, tert-butanol+2,2,4-trimethylpentane subsystems. The data were measured isothermally at 318.13, 328.20, and 339.28 K covering pressure range 15–100 kPa. Azeotropic data are presented for the tert-butanol+2,2,4-trimethylpentane system. Molar excess volumes at 298.15 K are given for the three binary systems. The binary vapour–liquid equilibrium data were correlated using Wilson, NRTL, and Redlich–Kister equations; the parameters obtained were used for calculation of phase behaviour in ternary system and for subsequent comparison with experimental data.  相似文献   

8.
报道了钯催化下炔丙醇与叔丁基异腈反应高选择性合成吡咯并呋喃衍生物和氨基甲酸酯的新方法.在10%(摩尔分数)Pd(OAc)2与110%(摩尔分数)LiBr存在下,一分子炔丙醇与三分子叔丁基异腈在水的参与下发生“有序的”异腈三重插入反应,以56%~73%的产率高选择性地生成了吡咯并呋喃衍生物;而在10%(摩尔分数)Pd(PPh3)4和110%(摩尔分数)K3PO4存在下,一分子炔丙醇与一分子叔丁基异腈在空气中氧气的参与下发生简单氧化偶联反应,以51%~74%的产率生成了氨基甲酸酯.该方法仅通过简单改变钯催化剂与盐的种类就能得到不同产物,且反应选择性高,分别为吡咯并呋喃亚胺衍生物和氨基甲酸酯提供了有吸引力的合成途径.  相似文献   

9.
Six new copper(II) complexes of 2-benzoylpyridine N(4)-cyclohexyl thiosemicarbazone (HL) have been synthesized and characterized by different physicochemical techniques like molar conductivity measurements, magnetic studies and electronic, infrared and EPR spectral studies. Five of the complexes have been found to possess the stoichiometry [CuLX], where X = Cl (1), Br (2), NO3 (3), NCS (4), N3 (5). The complex prepared from copper sulfate has the composition [Cu2L2SO4] · (H2O)2 (6). In all the complexes the deprotonated ligand, L and the anion were found to be coordinated to the Cu(II) ion. The terdentate nature of the ligand is evident from the IR spectra. The metal ligand bonding parameters evaluated from the EPR spectra indicate strong in-plane σ and in-plane π bonding. The magnetic and spectroscopic data indicate a square planar geometry for complexes 1, 3, 4 and 5, while the complexes 2 and 6 are assigned a square pyramidal geometry. Crystal structure of the complex [CuLCl] reveals two molecules per asymmetric unit of a monoclinic lattice, with space group symmetry P21/n. The complexes [ CuLBr 2] (2) and [CuLNCS] (4) crystallized into triclinic lattices with space group . Compound 2 exists as a thiolate bridged copper(II) dimer. The antimicrobial activity of the ligand and the copper complexes were tested against five types of bacteria isolated from clinical samples. The complexes were found to be active against Bacillus sp., Vibrio cholera O1, Staphylococcus aurus and Salmonella paratyphi.  相似文献   

10.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

11.
A series of Cu(II) complexes of disubstituted 2,2′-bipyridine bearing ammonium groups [Cu(L1−4)2Br]5+ (1–4, L1 = [5,5′-(Me2NHCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+, L3 = [4,4′-(Me2NHCH2)2-bpy]2+, L4 = [4,4′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl) were synthesized, of which complexes 1 and 4 were structurally characterized. Both coordination configurations of Cu(II) ions can be described as distorted trigonal bipyramid. The interaction between all complexes and CT-DNA was evaluated by thermal-denaturation experiments and CD spectroscopy. Results show that the complexes interact with CT-DNA via outside electrostatic interactions and their binding ability follows the order: 1 > 2 > 3 > 4. In the absence of any reducing agents, the cleavage of plasmid pBR322 DNA by these complexes was investigated and the hydrolysis kinetics of DNA was studied in Tris buffer (pH 7.5) at 37 °C. Obtained pseudo-Michaelis–Menten kinetic parameters: 15.0, 13.6, 2.01 and 1.69 h−1 for 1, 2, 3 and 4, respectively, indicate that complexes 1 and 2 exhibit very high DNA cleavage activities. According to their crystal data, the high nuclease activity may be attributed to the strong interaction of the metal moiety and two ammonium groups with phosphate groups of DNA.  相似文献   

12.
Three new complexes {[Cu(dpdapt)(Hhbd)] · 6H2O}n (1) (dpdapt = N,N′-di(2-pyridyl)-2,4-diamino-6-phenyl-1,3,5-triazine, Hhbd = 2-hydroxybutanedioicate dianion), [Cu(dpdapt)(SO4)] · 2H2O (2) and [Cu(dpdapt)(oxa)] · H2O (3) (oxa = oxalate dianion) have been synthesized and structurally characterized. The non-covalent interactions of π–π stacking and hydrogen bonding extend complexes 1–3 into supramolecular architectures, where 1 self-assembles into a 1D polymeric chain by dicarboxylate bridges and exhibits a 3D framework with 1D open channels, while complexes 2 and 3 display 2D wavelike networks. Interestingly, in 1, the host framework encapsulates hexameric water clusters that are connected into 1D arrays by supramolecular association along the 1D open channels. The UV/vis, IR spectra, fluorescence and TG analysis for complexes 1, 2 and 3 are also discussed.  相似文献   

13.
The ring-opening metathesis polymerization (ROMP) of norbornene catalyzed by bis(acetonitrile) molybdenum and tungsten complexes, [M(η3-C3H5)Cl(CO)2(NCMe)2] (1-Mo: M = Mo, 1-W: M = W), which have two labile acetonitrile ligands, has been investigated. These complexes catalyzed the ROMP of norbornene as a single-component initiator. The highly cis-selective polymerization proceeded in a THF solution (95% for 1-Mo and 96% for 1-W), whereas polymerization in CH2Cl2 or toluene resulted in lower cis selectivity. The polymerization of terminal acetylenes using these complexes was also examined. The tungsten complex 1-W showed a high catalytic activity for the polymerization of terminal acetylenes, such as phenyl- and tert-butylacetylene. A highly active catalytic system for the ROMP of norbornene was achieved by the activation of the tungsten complex, 1-W, with one equivalent of phenylacetylene, giving poly(norbornene) with a high molecular weight (Mn = 391 × 104) and a high cis selectivity (cis  89%).  相似文献   

14.
The first enantioselective peroxidation of prochiral allylic and benzylic C-H compounds by the use of chiral bisoxazoline-copper(I) complexes, generated in situ from the ligands 3 and 4a-d, and t-BuOOH as oxidant is reported. Cyclohexene 1, cyclopentene 5, -angelica lactone 7, allylbenzene 9 and 2-phenylbutane 11 were converted into the optically active allylic and benzylic tert-butyl peroxides 2, 6, 8, 10a and 12 in good yields and ee values of 4-20%. Oxidations of 1-substituted 1-cyclohexenes 13a-c led to mixtures of regioisomeric peroxides 16a-c, 17a-c and 18a-c with different regio- and enantioselectivities, depending on the 1-substituent and the ligand used. The highest ee values (up to 84%) were observed for (S)-3-tert-butylperoxy-1-methyl-1-cyclohexene 17a.  相似文献   

15.
Spatial structure of six β-substituted enones, with common structure R1O–CR2CH–COCF3, were R1 = C2H5, R2 = H (ETBO); R1 = R2 = CH3 (TMPO); R1 = C2H5, R2 = C6H5 (ETPO); R1 = C2H5, R2 = 4- O2NC6H4 (ETNO); R1 = C2H5, R2 = C(CH3)3 (ETDO) were investigated by 1H and 19F NMR, infrared spectroscopy and AM1 calculations. NMR spectra revealed that enones (MBO), (ETBO) and (TMPO) are exclusively (3E) isomers, whereas in (ETPO), (ETNO) and especially in (ETDO) the percentage of (3Z) isomers is significant and depends on the nature of solvents. Conformational behaviour of studied enones are determined by the rotation around of CC double bond, C–C and C–O single bonds (correspondingly trifluoroacetyl and alkoxy groups), and (EZZ) conformer being the most stable in all cases. IR spectra revealed that with the exception of (ETDO) (EZZ) conformer is most populated in all cases. Bulky substituents like phenyl or tert-butyl group at β-position of enone result in the equilibrium mainly between (EZZ) and (ZZZ) forms, whereas β-hydrogen and β-methyl substituents determine the equilibrium between (EZZ) and (EEZ) or (EZE) conformers.  相似文献   

16.
Five novel ruthenium complexes, RuCl2(MOTPP)2[(S,S)-DPEN] [MOTPP = tris(4-methoxyphenyl)phosphine] (1), RuCl2(TFTPP)2[(S,S)-DPEN] [TFTPP = tris(4-trifluoromethylphenyl)phosphine] (2), RuCl2(PPh3)2[(S,S)-DPEN] (3), RuCl2(BDPX)[(S,S)-DPEN] [BDPX = 1,2-bis(diphenylphosphinomethyl)benzene] (4), RuCl2(BISBI)[(S,S)-DPEN][BISBI = 2,2′-bis((diphenylphosphino)methyl)-1,1′-biphenyl]] (5) were synthesized and used for the hydrogenation of aromatic ketones. The complexes showed high catalytic activities, especially that the catalytic activity of complex 5 containing the diphosphine with large bite angle and complex 1 containing triarylphosphine with electron-donating group were higher than the other three complexes. The enantioselectivities of products were almost not influenced by the electron factors of phosphine.  相似文献   

17.
Reaction between 5,5′-methylenebis(salicylaldehyde) or 5,5′-dithiobis(salicylaldehyde) and 1,2-diaminocyclohexane in equimolar ratio leads to the formation of new polymeric chelating ligands [–CH2(H2sal-dach)–]n (I) and [–S2(H2sal-dach)2–]n (II). These ligands react with [VO(acac)2] in DMF to give coordination polymers [–CH2{VO(sal-dach)·DMF}–]n (1) and [–S2{VO(sal-dach)·DMF}–]n (2). Both complexes are insoluble in common solvents and exhibit a magnetic moment value of 1.74 and 1.78μB, respectively. IR spectral studies confirm the coordination of ligands through the azomethine nitrogen and the phenolic oxygen atoms to the vanadium. These complexes exhibit good catalytic activity towards the oxidation of styrene, cyclohexene and trans-stilbene using tert-butylhydroperoxide as an oxidant. Concentration of the oxidant and reaction temperature has been optimised for the maximum oxidation of these substrates. Under the optimised conditions, oxidation of styrene gave a maximum of 76% (with 1) or 85% (with 2) conversion having following products in order of selectivity: benzaldehyde > styreneoxide > 1-phenylethane-1,2-diol > benzoic acid. A maximum of 98% conversion of cyclohexene was obtained with both the catalysts where selectivity of cyclohexeneoxide varied in the order: 2 (62%) > 1 (45%). With the conversion of 33% (with 1) and 47% (with 2), oxidation of trans-stilbene gives benzaldehyde, benzil and trans-stilbeneoxide as major products.  相似文献   

18.
The densities and ultrasonic velocity of the binary mixtures methyl tert-butyl ether (MTBE) or ethyl tert-butyl ether (ETBE) + (o-xylene, m-xylene and p-xylene) at the range 288.15–323.15 K and atmospheric pressure, have been measured over the whole concentration range. The experimental excess volumes and deviation of isentropic compressibilities data have been analyzed. The experimental values have been studied in terms of different theoretical models. The gathered data improve open literature related to gasoline additives, as the comparison has proved, and help to understand the ether effect into aromatic environment in terms of steric hindrance and oxygen group polar potency.  相似文献   

19.
This contribution reports ethylene and propylene polymerization behavior of a series of Ti complexes bearing a pair of phenoxy–imine chelate ligands. The bis(phenoxy–imine)Ti complexes in conjunction with methylalumoxane (MAO) can be active catalysts for the polymerization of ethylene. Unexpectedly, this C2 symmetric catalyst produces syndiotactic polypropylene. 13C NMR spectroscopy has revealed that the syndiotacticity arises from a chain-end control mechanism. Substitutions on the phenoxy–imine ligands have substantial effects on both ethylene and propylene polymerization behavior of the complexes. In particular, the steric bulk of the substituent ortho to the phenoxy–oxygen is fundamental to obtaining high activity and high molecular weight for ethylene polymerization and high syndioselectivity for the chain-end controlled propylene polymerization. The highest ethylene polymerization activity, 3240 kg/mol-cat h, exhibited by a complex having a t-butyl group ortho to the phenoxy–oxygen, represents one of the highest reported to date for Ti-based non-metallocene catalysts. Additionally, the polypropylene produced exhibits a Tm, 140 °C, and syndioselectivity, rrrr 83.7% (achieved by a complex bearing a trimethylsilyl group ortho to the phenoxy–oxygen) that are among the highest for polypropylenes produced via a chain-end control mechanism. Hence, the bis(phenoxy–imine)Ti complexes are rare examples of non-metallocene catalysts that are useful for the polymerization of not only ethylene but also propylene.  相似文献   

20.
Two cobalt(II) coordination polymers formed from bte (bte = 1,2-bis(1,2,4-triazol-1-yl)ethane), namely [Co(bte)2(dca)2]n (1) and {[Co(bte)(dca)2] · H2O}n (2), have been synthesized and characterized by elementary analyses, IR, thermogravimetric analyses, X-ray diffraction analyses and magnetic measurements. Compound 1 is a double-chain with Co(II) centers bridged by bte, containing metallocycles of [Co2(bte)2] and trans dca as termination ligands. In 2, each Co(II) center is bonded by two bridging bte ligands and four dca as μ-1,5-dca in different orientations in the 3D network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号