首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The vibrational spectrum of crystal thymine is calculated by density functional theory (DFT) at the B3LYP complex function. Considering the effect of intermolecular H-bonds, we add two water molecules that can form H-bonds with the CO and NH groups of thymine. The experimental spectra of normal Raman of thymine in solid state and surface enhanced Raman (SERS) of thymine adsorbed in silver colloids are presented in this study. The calculated Raman spectrum of thymine by DFT is in agreement with the experimental result of normal Raman spectrum. The appearance of new bands of thymine in SERS shows that molecules of thymine are adsorbed in the surface of silver nanoparticles with a perpendicular orientation through an oxygen atom (O7).  相似文献   

2.
对氯硝基苯吸附在银纳米粒子上的偶联反应   总被引:1,自引:0,他引:1  
表面增强拉曼光谱(SERS)具有极高的检测灵敏度, 通过检测吸附分子的SERS信号, 可以获得表面吸附分子的结构以及可能发生的反应. 在拉曼激发光源的辐射下, 在碱性溶液中, 银纳米粒子表面吸附的对氯硝基苯(PCNB)的SERS光谱与其固体的常规拉曼光谱相比, 出现异常SERS谱. 通过采用密度泛函理论(DFT)计算, 对PCNB以及可能的偶联产物p,p''-二氯偶氮苯(DCAB)进行理论分析以及谱峰归属, 发现这些异常峰来自其偶联产物DCAB的偶氮C-N=N-C基团的基频振动.  相似文献   

3.
The competition for binding and charge‐transfer (CT) from the nitrogen containing heterocycle pyrimidine to either silver or to water in surface enhanced Raman spectroscopy (SERS) is discussed. The correlation between the shifting observed for vibrational normal modes and CT is analyzed both experimentally using Raman spectroscopy and theoretically using electronic structure theory. Discrete features in the Raman spectrum correspond to the binding of either water or silver to each of pyrimidine's nitrogen atoms with comparable frequency shifts. Natural bond orbital (NBO) calculations in each chemical environment reveal that the magnitude of charge transfer from pyrimidine to adjacent silver atoms is only about twice that for water alone. These results suggest that the choice of solvent plays a role in determining the vibrational frequencies of nitrogen containing molecules in SERS experiments.  相似文献   

4.
Surface-enhanced Raman scattering (SERS) spectra of thiram (tetramethylthiuram disulfide), a dimethyl dithiocarbamate fungicide, were recorded after the adsorption on plasmonic silver nanowires from a system of water, organic solvent and nanoparticles. As organic solvents dichloromethane and 1-octanol were involved. A method for measuring the adsorption constant of thiram as a model molecule to the silver surface by studying its partition phenomena in a binary solvent system is presented. The method is based on the extraction of a hydrophobic molecule from an organic solvent by an aqueous suspension of silver anisotropic nanoparticles. The obtained results demonstrate the effectiveness of SERS methodology for the sensitive analysis of compounds with low aqueous solubility, and a reliable SERS spectrum of thiram was obtained with excellent signal/noise ratio at low concentrations. In addition, for vibrational assignments, Density Functional Theory (DFT) was used for the simulation of the Raman and SERS spectra of thiram and its complexes with silver considering the following two models: a single silver atom and an Ag20 cluster.  相似文献   

5.
The adsorption of 2-amino-4-methylbenzothiazole (2-AMBT) on colloidal silver particles has been investigated by a surface enhanced Raman scattering (SERS) study. The SERS spectra of the 2-AMBT molecule at varied adsorbate concentrations recorded in different time domains are compared with its Fourier transform infrared (FTIR) spectrum and normal Raman spectrum (NRS) in the bulk and in solution. The experimentally observed SERS spectra are compared with the theoretically modeled surface complexes using ab initio restricted Hatree-Fock (RHF) and density functional theory (DFT) calculations. The most favorable adsorptive sites of the 2-AMBT molecule have been estimated by natural population analysis (NPA) using the above-mentioned high level of theories. The enhancement of the in-plane modes together with the appearance of Ag-N stretching frequency at 215 cm(-1) indicates that the 2-AMBT molecule is adsorbed on the silver surface through the lone pair electrons of both nitrogen atoms with the molecular plane nearly vertical to the surface.  相似文献   

6.
Methyl(2-methyl-4,6-dinitrophenylsulfanyl)ethanoate was prepared by nucleophilic substitution. FT-IR and FT-Raman spectra of methyl(2-methyl-4,6-dinitrophenylsulfanyl)ethanoate were recorded and analyzed. Surface-enhanced Raman scattering (SERS) spectrum was recorded on a silver colloid. The vibrationl wavenumbers were computed by density functional theoretical (DFT) computations at the B3LYP/6-31G* level and they were found to be in good agreement with the experimental values. The molecule is adsorbed on the silver surface with the benzene ring in a 'tilted orientation'.  相似文献   

7.
The SER spectra of 1H-indazole adsorbed on silver hydrosol were recorded in the 1800-100 cm(-1) and in the 3200-2800 cm(-1) regions. The SERS data were interpreted on the basis of previous vibrational assignments, with the help of the results of DFT calculations carried out using the 6-31G** basis. From the comparison of SER and normal Raman spectra it can be deduced that 1H-indazole is non-dissociatively adsorbed on metal surface and that it interacts with silver sol via nitrogen atoms and ring pi-system. The molecular plane assumes a tilted orientation with respect to the silver surface. The effect of varying the concentration of adsorbate was also evaluated. The observed changes of the relative intensities of some enhanced bands suggest that the molecule assumes a more tilted orientation upon lowering the concentration of the adsorbate.  相似文献   

8.
Very stable silver particle suspension has been synthesized for use in surface-enhanced Raman scattering (SERS) spectroscopy with near-infrared exciting radiation. Such citrate-stabilized silver particles were obtained through a suitable control of the nucleation and growth process during the synthesis. The SERS spectra of the bis(dicyanomethylene) croconate dianion or croconate violet (CrocV) were obtained, with excitation in the near-infrared and in the visible region. The differences in the spectral patterns were correlated with a pre-resonance Raman effect of the adsorbate. The vibrational frequencies of CrocV isolated and interacting with silver surface were obtained through theoretical calculations using DFT method that together the surface selection rules allowed to perform the vibrational assignment of the SERS spectra and to infer the adsorption geometry.  相似文献   

9.
The surface-enhanced raman scattering (SERS) of benzoic acid/benzamide and salicylic acid/salicylamide on silver colloids show important wavenumber shifts with respect to the Raman spectrum of the band assigned to mode 1;ν(ring) when adsorbed on the metal surface (ca. +50 cm(-1)). In the case of the acids, this shift is originated by the deprotonation of the carboxylic group in agreement with the well-known fact that aromatic acids are adsorbed on silver as carboxylates. However, the main conclusion of this work is that a similar behavior is found for the respective amides that do not behave as acids in water solution. The here studied aromatic amides are adsorbed as azanions on silver nanoparticles even at pH 7 and link to the metal through the nitrogen and oxygen atoms of the ionized carboxamide group. This is a very surprising result given that amides are not significantly ionized even at pH 13-14. The deprotonation of these amides is not determined exclusively by the pH, but it is mainly caused by the strong affinity of the anionic species to the metal. Therefore, the SERS must be cautiously used as a universal pH sensor if the adsorption occurs through the ionizable group. In order to support this conclusion, theoretical DFT force field calculations have been carried out, confirming that deprotonated benzamide and salicylamide interact with the metallic surface.  相似文献   

10.
The surface geometry of (RS)-phenylsuccinic acid molecule was studied by analysis of the SERS spectra of aromatic dicarboxylic acid adsorbed on silver colloid surfaces. For a reliable analysis of the SERS spectrum, we also performed density functional theoretical calculations. The SERS spectral features indicated that the RSPSA molecules should bound to the silver as dicarboxylate, with a strongly tilted orientation with respect to the normal to the surface. Such a tilted orientation was presumed to occur by the simultaneous sigma and pi-type coordination of carboxylate groups to silver surface caused by the steric hindrance and electrostatic repulsion between the two carboxylate groups, and thereby RSPSA on silver was easily displaced with aromatic carboxylic acids. A sigma-type coordination therefore seemed to be more important than a pi-type coordination for aromatic carboxylic acid derivatives to assemble on a silver surface. The large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'at least vertical' configuration, with the ring perpendicular to the silver surface.  相似文献   

11.
《Vibrational Spectroscopy》2009,49(2):202-205
1H-1,2,4-triazole is a very effective corrosion inhibitor for copper. The adsorption of this compound on silver colloidal nanoparticles has been studied by means of surface enhanced Raman scattering (SERS). SERS data are interpreted with the help of DFT calculations of models of the surface complex formed by 1H-1,2,4-triazole on the silver colloidal nanoparticles surface. It was found that this compound is adsorbed on metal surface in its anionic form and that it interacts with silver through the N1 and N2 atoms. The molecular plane assumes a tilted orientation with respect to the silver surface.  相似文献   

12.
The surface-enhanced Raman scattering (SERS) studies of 5-amino tetrazole (5AT), a tetrazole derivative, in aqueous silver sol at pH approximately 9 and on deposited colloidal silver films were carried out and compared with the normal Raman spectrum of the molecule. The experimentally observed Raman bands along with their corresponding infrared bands were assigned based on the results of density functional theory (DFT) calculations. The significant changes evidenced between the SERS and the normal Raman spectra combined with the theoretical data obtained for Ag-5AT system demonstrated that the molecule is adsorbed on colloidal Ag particles through the lone pair of electrons of the nitrogen atom. The contribution of the chemical mechanism for the SERS enhancement was proved by the behavior of the electronic absorption spectrum of the Ag colloid upon addition of 5AT. This is further supported by the theoretical calculations that show that the favorable interaction of the frontier orbitals localized on Ag(+) and the negatively charged nitrogen from the tetrazole ring leads to the formation of the stable (up to 130 kJ mol(-1)) charge-transfer complex. The orientation of the adsorbed species with respect to the metal surface was also predicted by applying the "surface selection rule". In addition, the feasibility of the formation of the polymeric species has also been discussed.  相似文献   

13.
《Vibrational Spectroscopy》2007,43(2):415-419
Surface-enhanced Raman scattering (SERS) spectrum of very good quality of “silver nano-particles/C60/silver film” system was reported for the first time by using the pyridine as a intermediate to connect and nest the C60 molecules to the gap of silver nano-particles and silver film. Experiment results show that the ternary system of “silver nano-particles/C60/silver film” is very effective and active. Not only was the number of vibrational modes greatly increased, especially some modes that were forbidden in Raman spectrum, but also were the significant Raman bands splitted as well as frequencies up and down shifted, respectively, arising from symmetry lowering and selection rule relaxing of C60 induced by the silver surface. Furthermore, the splitting of the Raman modes is consistent with the calculation based on group theory. The adsorption of C60 molecules is oriented on pentagons of C60 on the silver surface. It is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. On the one hand, the silver nanoparticles modified on the silver film play an important role in magnifying the surface local electric field near the silver surface through resonant surface plasmon excitation. On the other hand, charge transfer factor may not be neglected.  相似文献   

14.
Surface-enhanced Raman scattering (SERS) of 8-hydroxy quinoline (HQ) adsorbed on silver hydrosols are compared with the FTIR and normal Raman spectrum in the bulk and in solution. Definite evidence of the charge transfer interaction to the overall contribution in the SER enhancement has been reported. The excitation profile study also supports the evidence of a charge transfer interaction. The effect of pH variation on the SER band intensity is explained in terms of chemisorption of the molecule on bare and chlorinated silver surfaces. The apparent enhancement factor calculations of the principal Raman bands indicate that in the surface-adsorbed state, an HQ molecule is oriented neither flat nor vertical to the silver surface but is tilted. Copyright 2000 Academic Press.  相似文献   

15.
利用周期性密度泛函的方法, 将过渡金属杂原子取代的硅基分子筛的共振拉曼计算结果成功推广到磷铝分子筛体系中. 根据对Fe-ZSM-5共振拉曼光谱特点的推广和对Fe-AlPO4-5振动光谱的理论计算结果, 预测在Fe-AlPO4-5的共振拉曼光谱的1190、1130、1000-1050和600 cm-1位置附近将出现四条显著的谱带. 实验的Fe-AlPO4-5的共振拉曼光谱中确实观察到四条与骨架Fe物种相关的谱带分别位于1210、1130、1050和630 cm-1处, 与预测结果一致. 另外发现含铁磷铝分子筛的共振振动频率要高于相应的含铁硅基分子筛体系的振动频率, 这种频率的差异主要是氧在不同分子筛体系中受力的力常数不同引起的. 另外磷氧四面体和铝氧四面体之间的电荷吸引作用对振动频率也有较大的影响.  相似文献   

16.
The results of extended MO calculations using density functional theory (DFT) approximation supported by experimental Raman, 1H and 13C NMR studies on thiophene are reported. Raman spectra of liquid thiophene were re-examined and the performance of a hybrid B3PW91 density functional was compared with the ab initio restricted Hartree–Fock (RHF) method. With the basis sets of the 6-311++G** quality, the DFT calculated bond lengths, dipole moments and harmonic vibrations were predicted in a very good agreement with available experimental data.

Additionally, the results on thiophene were extended by calculations on 3-methylthiophene and selenophene. In this case, a significant change in geometry and charge distribution in thiophene ring due to a methyl group substituent or replacement of sulphur by selene atom was observed.

A linear correlation between the predicted harmonic vibrational frequencies (scaled using SQM method) and experimental ones for thiophene, selenophene and 3-methylthiophene was shown. The theoretically calculated spectra have satisfactorily reproduced the available experimental spectra for thiophene and selenophene.  相似文献   


17.
Surface-enhanced Raman scattering (SERS) spectra of the biologically important 2-aminobenzothiazole (2-ABT) molecule adsorbed on silver hydrosols are compared with its FTIR spectrum and normal Raman spectroscopy (NRS) spectrum in the bulk and in solution. The optimized structural parameters and the computed vibrational wavenumbers of the compound have been estimated from ab initio (Hatree-Fock) and density functional calculations. Some vibrational modes of the molecule have been reassigned. Concentration-dependent SERS spectra of the molecule reveal the existence of two types of vertically adsorbed species on colloidal silver particles, whose relative population varies with the adsorbate concentrations. The adsorption geometry and structural parameters of one type of adsorbed species are related to the NRS spectrum of the chemically prepared and theoretically modeled 2-ABT-Ag(I) coordination compound.  相似文献   

18.
Resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) of 4'-(N,N'-dimethylaminostyryl)-4-propylpyridinium bromide (hemicyanine, HC dye) in acetonitrile solution and on a colloidal silver surface have been investigated. The structure of the dye in the ground (S0) and excited (S1) electronic states was optimized using density functional calculations along with the B3LYP and the configuration interaction with the singlet excitation (CIS) methods, respectively, using the 6-31G basis set. The vibrational frequencies of the molecule were computed at the optimized geometry and compared with the observed Raman bands. A complete normal-mode analysis has been carried out because it is essential for the accurate assignment of the vibrational spectra. From the observed enhancement along various in-plane and out-of-plane vibrations in the SERRS spectrum and from theoretical calculations, it has been inferred that the interaction with the silver surface occurs via the nitrogen lone pair of the pyridyl or the dimethylamino group of the molecule with a tilted orientation. The observed red-shifts in the SERRS spectrum along various vibrations indicate strong interaction (chemisorption) of the HC dye with the silver surface. This is also supported by the presence of a Ag-N stretching vibration at 241 cm(-1). The effect of the dye concentration on the orientation of the molecule is also discussed.  相似文献   

19.
Silver nanoparticles were assembled on polyvinylpyridine (PVP) derivatized glass slides. Charge transfer between the adsorbed 4-aminothiophenol (PATP) and the immobilized silver nanoparticles was studied by surface-enhanced Raman spectroscopy with 1064 nm excitation, and compared with that of the silver nanoparticles in the colloid. It was demonstrated that the positive charges of the PVP layer could alter the charge distribution in the immobilized nanoparticles and induce the formation of the dipole in the nanoparticles, leading to less charge transfer from the metal to the adsorbed molecules. The coadsorption of chloride ions on the surface of the immobilized silver nanoparticles resulted in the redistribution of the charges in the nanoparticles and, in turn, altered the charge transfer between the adsorbed PATP molecules and the silver nanoparticles.  相似文献   

20.
Graphene‐enhanced Raman scattering (GERS) is emerging as an important method due to the need for highly reproducible, quantifiable, and biocompatible active substrates. As a result of its unique two‐dimensional carbon structure, graphene provides particularly large enhanced Raman signals for molecules adsorbed on its surface. In this work, the GERS signals of a test molecule, 4‐mercaptobenzoic acid (4‐MBA), with reproducible enhancement factors are discussed and compared with surface‐enhanced Raman scattering (SERS) signals from highly active substrates, covered with spherical silver nanoparticles. It is shown that chemical interactions between the molecule and graphene can result in a frequency shift in the graphene‐enhanced Raman signal of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号