首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐assembly reaction of zinc ions with tetracyanometalates in the presence of the tridentate chelated ligand 2,2′:6′,2′′‐terpyridine (terpy) yielded three cyanide‐bridged bimetallic compounds of general formula Zn(terpy)(H2O)M(CN)4 [M = Ni ( 1 ), Pd ( 2 ), Pt ( 3 )]. Compounds 1 – 3 were characterized by X‐ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetric (TG) analysis. Single‐crystal XRD analysis revealed that compounds 1 – 3 are isostructural and the structure consists of [Zn(terpy)(H2O)]2+ moieties and [M(CN)4]2– units linked alternatively to generate a one‐dimensional (1D) linear chain. The chains are further connected together through hydrogen bonding and π–π stacking interactions, forming a 3D supramolecular network. IR spectroscopic analysis indicated the presence of cyanide groups and terpy ligands in the structure. TG and powder XRD results showed that compounds 1 – 3 have higher thermal stabilities and exhibited irreversible for desorption/resorption of one coordinated water molecule.  相似文献   

2.
2‐Aryl‐4,5,6,7‐tetrahydro‐1,2‐benzisothiazol‐3(2H)‐ones 1a – e were synthesized by cyclocondensation of 2‐(thiocyanato)cyclohexene‐1‐carboxanilides 9 as a convenient new method. Their S‐oxides 10 were prepared by two routes, either by oxidation of 1 or dehydration of rac‐cis‐3‐hydroperoxysultims 11 . Furthermore, compounds 1 have been identified by HPLC? API‐MS‐MS as intermediates in the oxidation process of the salts 6 . The hydroperoxides 12b and rac‐trans‐ 11b have been unambiguously detected by HPLC? MS investigations and in the reaction of rac‐cis‐ 13b with H2O2 to the hydroperoxides rac‐trans‐ 11b and rac‐cis‐ 11b .  相似文献   

3.
Further study of our aerobic intermolecular cyclization of acrylic acid with 1‐octene to afford α‐methylene‐γ‐butyrolactones, catalyzed by the Pd(OCOCF3)2/Cu(OAc)2 ? H2O system, has clarified that the accumulation of water generated from oxygen during the reaction causes deactivation of the Cu cocatalyst. This prevents regeneration of the active Pd catalyst and, thus, has a harmful influence on the progress of the cyclization. As a result, both the substrate conversion and product yield are efficiently improved by continuous removal of water from the reaction mixture. Detailed analysis of the kinetic and spectroscopic measurements performed under the condition of continuous water removal demonstrates that the cyclization proceeds in four steps: 1) equilibrium coordination of 1‐octene to the Pd acrylate species, 2) Markovnikov‐type acryloxy palladation of 1‐octene (1,2‐addition), 3) intramolecular carbopalladation, and 4) β‐hydride elimination. Byproduct 2‐acryloxy‐1‐octene is formed by β‐hydride elimination after step 2). These cyclization steps fit the Michaelis–Menten equation well and β‐hydride elimination is considered to be a rate‐limiting step in the formation of the products. Spectroscopic data agree sufficiently with the existence of the intermediates bearing acrylate (Pd? O bond), η3‐C8H15 (Pd? C bond), or C11H19O2 (Pd? C bond) moieties on the Pd center as the resting‐state compounds. Furthermore, not only CuII, but also CuI, species are observed during the reaction time of 2–8 h when the reaction proceeds efficiently. This result suggests that the CuII species is partially reduced to the CuI species when the active Pd catalytic species are regenerated.  相似文献   

4.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

5.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

6.
Magnesium (Mg) and zinc (Zn) complexes incorporating tridentate anilido‐aldimine ligand, (E)‐2, 6‐diisopropyl‐N‐(2‐((2‐(piperidin‐1‐yl)ethylimino)methyl)phenyl)aniline ( AA Pip ‐H, 1 ), were synthesized and structurally characterized. The reaction of AA Pip ‐H ( 1 ) with MgnBu2 or ZnEt2 in equivalent proportions afforded the monomeric complex [( AA Pip )MgnBu] ( 2 ) or [( AA Pip )ZnEt] ( 3 ), respectively. The coordination modes of these complexes differ in the solid state: Mg complex 2 shows a four‐coordinated and distorted tetrahedral geometry, whereas Zn complex 3 adopts a trigonal planar geometry with a three‐coordinated Zn center. Complexes 2 and 3 are efficient catalysts for the ring‐opening polymerization of β‐butyrolactone (β‐BL) in the presence of 9‐anthracenemethanol (9‐AnOH). The polymerization of β‐BL with the Zn catalyst system is demonstrated in a living fashion with a narrow polydispersity index, PDI = 1.01–1.10. The number‐averaged molecular weight (Mn) of the produced poly(3‐hydroxybutyrate) (PHB) is quite close to the expected Mn over diverse molar ratios of monomer to 9‐AnOH. A greater ratio of monomer to alcohol catalyzed by Zn complex 3 served to form PHB with a large molecular weight (Mn > 60000). An effective method to prepare PHB‐b‐PCL and PEG‐b‐PHB by the ring‐opening copolymerization of β‐BL catalyzed by zinc complex 3 is reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
7‐Oxabenzonorbornadienes derivatives 1 a – d underwent reductive coupling with alkyl propiolates CH3C?CCO2CH3 ( 2 a ), PhC?CCO2Et ( 2 b ), CH3(CH2)3C?CCO2CH3 ( 2 c ), CH3(CH2)4C?CCO2CH3 ( 2 d ), TMSC?CCO2Et ( 2 e ), (CH3)3C?CCO2CH3 ( 2 f ) and HC?CCO2Et ( 2 g ) in the presence of [NiBr2(dppe)] (dppe=Ph2PCH2CH2PPh2), H2O and zinc powder in acetonitrile at room temperature to afford the corresponding 2alkenyl‐1,2‐dihydronapthalen‐1‐ol derivatives 3 a – n with remarkable regio‐ and diastereoselectivity in good to excellent yields. Similarly, the reaction of 7azabenzonorbornadienes derivative 1 e with propiolates 2 a, b and d proceeded smoothly to afford reductive coupling products 2alkenyl‐1,2‐dihydronapthalene carbamates 3 o – p in good yields with high regio‐ and stereoselectivity. This nickel‐catalyzed reductive coupling can be further extended to the reaction of 7oxabenzonorbornene derivatives. Thus, 5,6‐di(methoxymethyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene ( 4 ) reacted with 2 a and 2 d to furnish cyclohexenol derivatives bearing four cis substituents 5 a and b in 81 and 84 % yield, respectively. In contrast to the results of 4 with 2 , the reaction of dimethyl 7oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylate ( 6 ) with propiolates 2 a – d afforded the corresponding reductive coupling/cyclization products, bicyclo[3.2.1]γ‐lactones 7 a – d in good yields. The reaction provides a convenient one‐pot synthesis of γ‐lactones with remarkably high regio‐ and stereoselectivity.  相似文献   

8.
Zinc Complexes of the N,N,S‐Ligand 2‐Mercaptobenzyl‐bis‐(2‐pyridylmethyl)amine An improved synthesis of the title ligand MBPA–H has made its complex chemistry accessible. With diethyl zinc it forms the reactive ethyl complex (MBPA)Zn–C2H5 ( 1 ) whose reaction with phenol leads to (MBPA)Zn–OC6H5 ( 2 ). With zinc nitrate the labile compound (MBPA)Zn–ONO2 ( 3 ) is formed which in turn is converted with thiophenolate into (MBPA)Zn–SC6H5 ( 4 ). Structure determinations of 2 and 3 have confirmed severely deformed trigonal‐bipyramidal coordinations of the zinc atom whose ligation patterns correspond to those in some hydrolytic zinc enzymes.  相似文献   

9.
A simple procedure for the synthesis and characterization of new 3‐alkoxy‐3‐(1H‐tetrazol‐5‐yl)propionic acids and 2‐(1H‐tetrazol‐5‐yl)tetrahydrofuran‐ and ‐(1H‐tetrazol‐5‐yl)‐2H‐pyran‐3‐carboxylic acids from the [2 + 3] cycloaddition reactions between the nitrile group of β‐cyanocarboxylic acids with sodium azide in the presence of zinc chloride is described. The tetrazolic acids were isolated in moderate to good yields and are structurally analogous to succinic acid.  相似文献   

10.
Biologically active triazole Schiff bases ( L 1  L 3 ) derived from the reaction of 3‐amino‐1,2,4‐triazole with chloro‐, bromo‐ and nitro‐ substituted salicylaldehydes and their Zn(II) complexes (1–3) have been synthesized and characterized by their physical, spectral and analytical data. Triazole Schiff bases potentially act as tridentate ligands and coordinate with the Zn(II) metal atom through salicylidene‐O, azomethine‐N and triazole‐N. The complexes have the general formula [M(L‐H)2], where M = zinc(II) and L = ( L 1 – L 3 ), and observe an octahedral geometry. The Schiff bases and their Zn(II) complexes have been screened for in‐vitro antibacterial, antifungal and brine shrimp bioassay. The biological activity data show the Zn(II) complexes to be more potent antibacterial and antifungal than the parent simple Schiff bases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Multidentate N‐heterocyclic compounds form a variety of metal complexes with many intriguing structures and interesting properties. The title coordination polymer, catena‐poly[zinc(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N3:N3′;N3′:N3‐zinc(II)‐bis(μ‐benzene‐1,2‐dicarboxylato)‐κ2O1:O23O1,O1′:O2], [Zn2(C8H4O4)2(C11H10N4)2]n, has been synthesized by the reaction of Zn(NO3)2 with 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) and benzene‐1,2‐dicarboxylic acid (H2bdic) under hydrothermal conditions. There are two crystallographically distinct imb ligands [imb(A) and imb(B)] in the structure which adopt very similar coordination geometries. The imb(A) ligand bridges two symmetry‐related Zn1 ions, yielding a binuclear [(Zn1)2{imb(A)}2] unit, and the imb(B) ligand bridges two symmetry‐related Zn2 ions resulting in a binuclear [(Zn2)2{imb(B)}2] unit. The above‐mentioned binuclear units are further connected alternately by pairs of bridging bdic2− ligands, forming an infinite one‐dimensional chain. These one‐dimensional chains are further connected through N—H...O hydrogen bonds, leading to a two‐dimensional layered structure. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

12.
Reactions of 5-(p-aminophenyl)-10,15,20-triphenyl porphyrin (1) with Ru3(CO)12 or M(OCOCH3)2 (M=Ni,Mn) afforded metalloporphyrins(4-6),respectively.6-Deoxy-6-io-do-β-cyclodextrin(2) and mono(6-O-trifluoromethanesulfonyl) permethylated β-cyclodextrin(3) reacted with complexes 4-6 to give β-cyclodextrin bonded metal porphyrins (7-9) and permethylated β-cyclodextrin bonded me-tal porphyrins (10-12) respectively.These new complexes were identified by MS,IR,UV-visible and ^1H NMR spectra,and elemental analysis.  相似文献   

13.
The features of porphyrins defining their functionality are related to their conformational flexibility. The degree of nonplanarity of metalloporphyrins depends directly on the number of substituents, their size and their location. The introduction of substituents in the meso positions of β‐substituted porphyrins increases the steric interaction and leads to distortions of the porphyrin core. Increasing the distortion of the porphyrin core would augment the bathochromic (red) shift of the electronic absorption spectra. A new nonsymmetrical 2,3,7,8,12,13,17,18‐octaethyl‐5‐[(methylimino)methyl]porphyrin complex of palladium(II), [Pd(C38H47N5)], was synthesized and characterized by NMR, mass spectrometry and X‐ray analysis. The features of the electronic absorption spectrum of the synthesized complex are explained by the planarity of the porphyrin core and the π‐system of the imino group orthogonal to it.  相似文献   

14.
Designing co‐catalyst‐free late transition metal complexes for ethylene polymerization is a challenging task at the interface of organometallic and polymer chemistry. Herein, a set of new, co‐catalyst‐free, single‐component catalytic systems for ethylene polymerization have been unraveled. Treatment of anthranilic acid with various aldehydes produced four iminocarboxylate ligands ( L1 – L4 ) in very good to excellent yield (75–92 %). The existence of 2‐((2‐methoxybenzylidene)amino) benzoic acid ( L1 ) has been unambiguously demonstrated using NMR spectroscopy, MS and single‐crystal X‐ray diffraction. A neutral Pd‐iminocarboxylate complex [{N O}PdMe(L1)] (N O=κ2‐N,O‐ArCHNC6H4CO2 with Ar=2‐MeOC6H4) C1 was prepared by treating stoichiometric amount of L1.Na with palladium precursor. The identity of C1 was confirmed by 1–2D NMR spectroscopy and single‐crystal X‐ray diffraction studies. Along the same lines, palladium complexes C2 – C4 were prepared from ligands L2 – L4 respectively. In‐situ high‐pressure NMR investigations revealed that these Pd complexes are amenable to ethylene insertion and undergo facile β‐H elimination to produce propylene. These palladium complexes were then evaluated in ethylene polymerization reaction and various reaction parameters were screened. When C1 – C4 were exposed to ethylene pressures of 10–50 bar, formation of low‐molecular‐weight polyethylene was observed.  相似文献   

15.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

16.
Zinc(II) carboxylates with O‐, S‐ and N‐donor ligands are interesting for their structural features, as well as for their antibacterial and antifungal activities. The one‐dimensional zinc(II) coordination complex catena‐poly[[bis(2,4‐dichlorobenzoato‐κO)zinc(II)]‐μ‐isonicotinamide‐κ2N1:O], [Zn(C7H3Cl2O2)2(C6H6N2O)]n, has been prepared and characterized by IR spectroscopy, single‐crystal X‐ray analysis and thermal analysis. The tetrahedral ZnO3N coordination about the ZnII cation is built up by the N atom of the pyridine ring, an O atom of the carbonyl group of the isonicotinamide ligand and two O atoms of two dichlorobenzoate ligands. Isonicotinamide serves as a bridge between tetrahedra, with a Zn...Zn distance of 8.8161 (7) Å. Additionally, π–π interactions between the planar benzene rings contribute to the stabilization of the extended structure. The structure is also stabilized by intermolecular hydrogen bonds between the amino and carboxylate groups of the ligands, forming a two‐dimensional network. During thermal decomposition of the complex, isonicotinamide, dichlorobenzene and carbon dioxide were evolved. The final solid product of the thermal decomposition heated up to 1173 K was metallic zinc.  相似文献   

17.
A series of cyclohexane‐1,2‐diamine ( 3a – 3d ) and benzene‐1,2‐diamine derivatives ( 3e – 3h ) were pre‐ pared. Followed by hydrolysis, the reaction of 3a – 3c with PCl3 successfully led to the formation of cor‐ responding metastable saturated heteroatom‐substituted secondary phosphine oxides (HASPO 4a – 4c ), a tautomer of the saturated heteroatom‐substituted phosphinous acid (HAPA). Whereas ambient‐stable diamine‐coordinated palladium complexes were obtained, HAPA‐coordinated palladium complexes were not successfully synthesized. The molecular structures of HASPO 4c , Pd(OAc)2(3a) , PdBr2(3b) and Pd(OAc)2(3c) and [Cu(NO3)(3d)+][NO3 ? ] were determined by single‐crystal X‐ray diffraction method. Catalysis of in‐situ Suzuki‐Miyaura cross‐coupling reactions for aryl bromides and phenylboronic acid using diamine 3a as ancillary ligand showed that the optimized reaction condition at 60 °C is the combination of 2 mmol % 3a /3.0 mmol KOH/1.0 mL 1,4‐dioxane/1 mmol % Pd(OAc)2. Moreover, moderate reactivity was observed when using aryl chlorides as substrates (supporting infor‐ mation). When diamine 3d was employed in Heck reaction, good tolerance of functional groups of aryl bromides were observed while using 4‐bromoanisole and styrene as substrates. The optimized condi‐ tion for Heck reaction at 100 °C is 3 mmol % 3d /3.0 mmol CsF/1.0 mL toluene/3 mmol % Pd(OAc)2. In general, cyclohexane‐1,2‐diamine derivatives exhibited better catalytic properties than those of benzene‐1,2‐diamines.  相似文献   

18.
The largely reversible, light‐induced tautomerization of 2‐nitrotoluene ( 1 ) to the quinonoid aci‐nitro tautomer aci‐ 1 was studied by flash photolysis as a benchmark for comparison with the widely used nitrobenzyl phototriggers (`caged compounds'). The pH‐rate profile for the decay of aci‐ 1 in aqueous solution exhibits downward curvature at pH 3 – 4, which is attributed to pre‐equilibrium ionization of the nitronic acid aci‐ 1 to its anion 1 (pKa=3.57). Two regions of upward curvature, at pH ca. 6 and <0 (H0≈−1), each indicate a change in the reaction mechanism. The elementary reactions that dominate between the curved regions are assigned on the basis of kinetic isotope effects and the observation of general acid catalysis: Hydronium ions regenerate 2‐nitrotoluene by C‐protonation of 1 in the pH range of 0 – 6, and H2O is the proton source at pH>6. A hird, irreversible Nef‐type isomerization of aci‐ 1 prevails in highly acidic solutions (pH<0). The equilibrium constant for the thermal tautomerization of 1 to aci‐ 1 is estimated as pKT=17.0±0.2 based on kinetic data.  相似文献   

19.
A series of compounds, viz. 2‐(3‐(4‐aryl)‐1‐isonicotinoyl‐4,5‐dihydro‐1H‐pyrazol‐4‐yl)‐3‐phenylthiazolidin‐4‐one 4 ( a – n ), have been synthesized by reaction of 3 ( a – n ) with thioglycolic acid in the presence of zinc chloride. Compounds 3 ( a – n ) have been synthesized by amination of formylated pyrazoles 2 ( A – B ), which were synthesized by formylation of 1 ( A – B ) by Vilsmeier–Haack reagent (POCl3/DMF). Compounds 1 ( A – B ) were synthesized by condensation of hydrazide and substituted acetophenones under conventional method and microwave irradiation method. These compounds were identified on the basis of melting point range, Rf values, infrared, 1H NMR, and mass spectral analysis. These compounds were evaluated for their in vitro antimicrobial activity, and their minimum inhibitory concentration was determined. Among them, compound 4b and compound 4l possess appreciable antimicrobial and antifungal activities. Antibacterial activity results showed that compounds containing electron‐withdrawing groups were more active than compounds containing electron‐releasing groups.  相似文献   

20.
Diphenyl(3‐methyl‐2‐indolyl)phosphine (C9H8NPPh2, 1 ) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N‐bridging coordination mode. On treating 1 with [Pd(O2CCH3)2], the new complexes [Pd(μ‐C9H7NPPh2)(NCCH3)]2 ( 2 ) or [Pd(μ‐C9H7NPPh2)(μ‐O2CCH3)]2 ( 3 ) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(μ‐C9H7NPPh2)3(μ‐O2CCH3)] ( 4 ), in which the bimetallic unit is bonded by three C9H7NPPh2? moieties and one carboxylate group. Using this methodology, [Pd2(μ‐C6H4PPh2)2(μ‐C9H7NPPh2)(μ‐O2CCX3)] (X=H ( 7 ); X=F ( 8 )) were synthesised from the ortho‐metalated compounds [Pd(C6H4PPh2)(μ‐O2CCX3)]2 (X=H ( 5 ); X=F ( 6 )). Complexes 3 , 4 , 7 , and 8 have been found to be active in the catalytic β‐boration of α,β‐unsaturated esters and ketones under mild reaction conditions. Hindrance of the carbonyl moiety has an influence on the reaction rate, but quantitative conversion was achieved in many cases. More remarkably, when aryl bromides were added to the reaction media, complex 7 induced a highly successful consecutive β‐boration/cross‐coupling reaction with dimethyl acrylamide as the substrate (99 % conversion, 89 % isolated yield).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号