首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

2.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

3.
In this work, a simple experimental procedure was reported for the electroanalytical determination of selenium (IV) using reduced graphene oxide (rGO) to modify glassy carbon electrode (GCE). The rGO was obtained by reduction of graphene oxide obtained via Hummer’s method. The synthesised rGO was characterised using X-ray diffraction, Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive spectroscopy and transmission Electron microscopy (TEM). GCE was modified with rGO and the electrochemical properties of the bare and modified electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained showed that the modified electrode exhibited more excellent electrochemical properties than the bare GCE. The optimum conditions for detection of selenium in water using square wave anodic stripping voltammetry were as follows: deposition potential ?500 mV, pH 1, pre-concentration time of 240 s and 0.1 M nitric acid was used as supporting electrolyte. The linear regression equation obtained was I (µA) = 0.8432C + 9.2359 and the detection limit was calculated to be 0.85 μg L?1. However, Cu(II) and Cd(II) are the two cations that interfered in the analysis of selenium in water.

The sensor was also applied for real sample water analysis and the result obtained was affirmed with inductively coupled plasma optical emission spectroscopic method. It is believed that our proposed sensor hold promise for practical application.  相似文献   

4.
《Analytical letters》2012,45(6):923-935
Electrochemically reduced graphene oxide (ER-GO) was prepared by reducing exfoliated graphene oxide sheets on a glassy carbon electrode (GCE). The voltammetric responses of Sudan I-IV were studied at the ER-GO modified GCE (ER-GO/GCE). Compared with chemically reduced graphene oxide (CR-GO) modified electrode (CR-GO/GCE), ER-GO/GCE showed higher voltammetric responses to Sudan I. The electrode had a linear response to Sudan I in the range of 0.04–8.0 µmol L?1 and a detection limit of 0.01 µmol L?1. The real sample determination indicated that the proposed method was reliable, effective, and sufficient.  相似文献   

5.
A graphitized mesoporous carbon modified glassy carbon electrode (GCE/GMC) prepared by drop coating method without any pre-anodization of the underlying GCE or external binder/matrix, has been demonstrated for simultaneous electrochemical oxidation of guanine (G) and adenine (A) at oxidation potentials 0.60 and 0.85 V vs. Ag/AgCl, respectively, in the presence of thymine (T) by differential pulse voltammetric method in pH 7 phosphate buffer solution. Control voltammetric experiments with unmodified GCE, graphite nanopowder and multiwalled carbon nanotube modified electrodes yielded either feeble or with high-background current responses. Interestingly, the GCE/GMC showed highly efficient, stable and well-defined voltammetric signals. Thymine oxidation signal noticed discretely at 1.15 V vs. Ag/AgCl on the GCE/GMC was not influenced for the simultaneous determination of G and A. Constructed DPV calibration graphs were linear in the range of 25–200 and 25–150 μM, respectively, for the G and A. Corresponding detection limit (S/N?=?3) values are 0.76 and 0.63 μM. Real sample analyses for the detection of G and A concentrations in calf-thymus DNA (detected [G]/[A] ratio?=?0.82), beef brain and beef liver were successfully demonstrated with recovery values ~100 %.  相似文献   

6.
The authors describe a dopamine (DA) sensor based on a glassy carbon electrode modified with a composite film composed of carbon dots (C-dots) and graphene functionalized with an ionic liquid. The C-dots were functionalized with carboxy groups whose negative charge promotes electrostatic attraction to the protonated amino groups in DA. The presence of an imidazole cation in the IL facilitates interaction with the C-dots and DA via electrostatic interactions and π-stacking forces. Under optimal conditions, the modified GCE display improved electrochemical response to DA compared to a bare GCE, or a GCE modified with C-dots or IL-graphene only. The oxidation current, measured best at a potential of 0.22 V (vs. Ag/AgCl) is linearly related to the DA concentration in the 0.1 to 600 μM range, with a 30 nM detection limit at a signal-to-noise ratio of 3. Ascorbic acid does not interfere even in large excess, and the sensor is stable for at least a month. The modified GCE was applied to the determination of DA in spiked fetal bovine serum and gave satisfactory results.  相似文献   

7.
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs) via continuous cycling between 0 and 0.9 V (vs. SCE). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V. The apparent surface coverage of the electrode is at least 24 times higher (2.7?×?10?10 mol cm?2) than that obtained with a bare GCE (1.1?×?10?11 mol cm?2). This is attributed to a remarkably strong synergistic effect between the acid-pretreated SWCNTs and the electrodeposited PCV coating. Response is fast (2 s) and sensitive (281 mA M?1 cm?2). Other features include a wide linear range (150 nM to 0.4 mM) and a low detection limit (150 nM at an SNR of 3). The sensor has been successfully applied to the determination of hydrazine in water and cigarette samples with good accuracy and precision. In addition, the morphology and the wetting properties of the coating were studied by scanning electromicroscopy and contact angle measurements.
Figure
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V with fast response, wide linear range and a low detection limit.  相似文献   

8.
A biosensor with high stability was prepared to determine hydrogen peroxide (H2O2). This hydrogen peroxide biosensor was obtained by modifying glassy carbon electrode (GCE) with a composite film composed of gelatin-multiwalled carbon nanotubes. Catalase (Cat) was covalently immobilized into gelatin-multiwalled carbon nanotubes modified GCE through the well-known glutaraldehyde (GAD) chemistry in order to enhance the stability of electrodes. The enzyme sensor can achieve direct electrochemical response of hydrogen peroxide. The cyclic voltammograms at different scan rates, electrochemical impedance spectroscopy (EIS), and scanning electron microscope (SEM) tests indicate that the enzyme sensor performs positively on increasing permeability, reducing the electron transfer resistance, and improving the electrode performance. The linear response of standard curve for H2O2 is in the range of 0.2 to 5.0 mM with a correlation coefficient of 0.9972, and the detection limit of 0.001 mM. A high operational and storage stability is demonstrated for the biosensor. The peak potential at room temperature in two consecutive weeks stays almost consistent, and the enzyme activity is kept stable even after 30 days in further study.  相似文献   

9.
A glassy carbon electrode (GCE) is modified with platinum nanoparticle (PtNPs) decorated multiwalled carbon nanotube (MWCNT). The modified electrode is applied for the determination of ceftriaxone (CFX) in the presence of lidocaine. Different methods were used to characterize the surface morphology of the modified electrode. The electrochemical behavior of CFX was investigated at GCE, MWCNT/GCE and PtNPs/MWCNT/GCE. A factorial-based response-surface methodology was used to find out the optimum conditions with minimum number of experiments. Under the optimized conditions, oxidation peak currents increased linearly with CFX concentration in the range of 0.01–10.00 μM with a detection limit of 9.01 nM. The results prove that the modified electrode is also suitable for the determination of CFX in pharmaceutical and clinical preparations.  相似文献   

10.
A sensitive electroanalytical method for the determination of anticancer drug etoposide (ETP) using adsorptive stripping differential pulse voltammetry (AdSDPV) at a multi-walled carbon nanotube-modified glassy carbon electrode (MWCNT-modified GCE) is presented. The surface morphology of modified electrode was characterized by scanning electron microscopy. The effects of accumulation time and potential, pH, scan rate, and amount of MWCNT suspension were investigated. The calibration curve was linear in the concentration range of 2.0?×?10?8–2.0?×?10?6 M with the detection limit of 5.4?×?10?9 M. The reproducibility of the peak current was found at 1.55 % (n?=?5) RSD value in pH 6.0 Britton–Robinson buffer for the MWCNT-modified GCE. The method was then successfully utilized for the determination of ETP in pharmaceutical dosage form, and a recovery of 99.55 % was obtained. The possible oxidation mechanism of ETP was also discussed. The proposed electroanalytical method using MWCNT-modified GCE is the most sensitive method for the determination of ETP with lowest limit of detection in the previously published electrochemical methods.  相似文献   

11.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

12.
《Analytical letters》2012,45(7):1289-1298
Abstract

Poly (acridine orange) (PAO) film–modified electrode was prepared by the electrooxidation of Acridine orange on a glassy carbon electrode (GCE) for the detection of hydroquinone in the presence of o‐hydroquinone and m‐hydroquinone. The electrochemical behavior of hydroquinone on the modified electrode was investigated with respect to different solution acidity, scan rate, and accumulation time. A pair of sharp and well‐defined peaks was obtained at 0.45 and 0.42 V [vs. a saturated calomel electrode (SCE)] at the PAO film–modified electrode. The potential difference between this pair of cathodic and anodic peaks was decreased to only 30 mV as compared to the 241 mV that was obtained on the bare glassy carbon electrode (GCE). As to o‐hydroquinone and m‐hydroquinone, their corresponding oxidation peaks appeared at 0.55 V and 0.89 V (vs. SCE), respectively. The oxidation potential differences between these three isomers enabled the separate detection of hydroquinone. Under the optimum experimental situation, the oxidation peak current of hydroquinone was proportional to the concentration at the range of 6.8×10?7–9.6×10?5 M. The detection limit was been estimated as 3×10?7 M with 130 s accumulation. This method was applied to the hydroquinone detection in tap water samples.  相似文献   

13.
A novel method has been developed for determination of nitrite by modifying the surface of a glassy carbon electrode (GCE) using single-walled carbon nanotubes with covalently immobilized single-strand deoxyribonucleic acid. The modified electrodes were characterized by field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The results demonstrate that the nanotube-DNA nanocomposite has been successfully immobilized on the surface of the GCE. The new electrode, under optimum conditions at room temperature, exhibits excellent electrocatalytic activity towards the oxidation of nitrite, with a significantly reduction of the overpotential. The linear range for the detection of nitrite is from 0.6 to 540 μM, with a sensitivity of 0.216 μA?μM?1, and a detection limit as low as 0.15 μM. The electrode showed good reproducibility and high stability and was successfully used to analyze nitrite in water and sausage samples.  相似文献   

14.
A simple and rapid method for p-chloronitrobenzene detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 2.2 V or 120 s, following cathodization at ?1.5 V for 60 s. The structure and morphology of the GCE surface was characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The electrochemical oxidization significantly increased the content of oxygen-containing functional groups in the electrode surface. The sensitivity for p-chloronitrobenzene detection was improved remarkably, and the detection limit was 1.0 × 10?3 mg L?1 (3S/N). The RSD of the voltammetric measurements was less than 6.8 % for six replicate. An electrochemical detection of p-chloronitrobenzene in spiked water sample was succeeded with satisfactory results.  相似文献   

15.
《Analytical letters》2012,45(10):1184-1196
The electrochemical detection of As(III) was investigated on the novel citrate stabilized gold nanoparticle modified glassy carbon electrode (AuNPs/GCE) in 1 M HCl by square wave anodic stripping voltammetry. AuNPs/GCE was prepared by simply casting citrate stabilized gold nanoparticles onto the well-polished glassy carbon electrode. Gold modification was evaluated by cyclic voltammetry, while transmission electron microscopy and UV-vis Spectroscopy revealed the size and distribution of gold nanoparticles. Anodic stripping voltammetry was performed with the modified electrode in As(III) solution. Electrochemical experiments proved that AuNPS/GCE exhibited good performance for As(III) analysis, the linear range were obtained between 0.05 and 1 ppb for trace level of As(III) as well as 1 to 15 ppb, with a limit of detection of 0.025 ppb. In terms of reproducibility, the precision of the aforementioned method in %RSD was calculated at 7.78% (n = 10), and the repeatability of the proposed method was calculated to be 1.59%. The application of the method to analyze As(III) in tap water was investigated.  相似文献   

16.
The voltammetric behaviour of two anthraquinone dyes such as Alizarin Red S (ARS) and Reactive blue 4 (RB4) was investigated at plain glassy carbon electrode (GCE), multiwalled carbon nano tube modified GCE (MWCNT/GCE) and zeolite modified GCE (ZE/GCE) using cyclic voltammetry. Effects of pH, scan rate and concentration were studied. The surface morphology of the modified electrode in the absence and presence of dye molecules was characterized by scanning electron microscopy (SEM). A systematic study on the variation of experimental parameters with differential pulse stripping voltammetry (DPSV) was carried out and the optimized experimental conditions were arrived. MWCNT/GCE performed well among the three electrode systems and the limit of detection (LOD) was 0.036?µg?mL?1 for ARS and 0.05?µg?mL?1 for RB4 on this modified system. Suitability of the differential pulse stripping voltammetric method for the trace determination of textile dyes in effluents was also realized.  相似文献   

17.
In this paper, a novel and convenient electrochemical sensor for detection of methimazole (MMI) by differential pulse voltammetry is presented. This sensor was fabricated by dripping well-dispersed MWCNTs onto glassy carbon electrode (GCE) surface, and then poly-l-Arg (P-L-Arg) film was deposited on the electrode. Finally, Cu nanoparticles (CuNPs) were electrochemically deposited on the resulting film by using cyclic voltammetry to prepare CuNPs-P-L-Arg/MWCNTs/GCE. The surface morphology of the electrodes has been studied by scanning electron microscopy. Studies reveal that the irreversible oxidation of MMI was highly facile on CuNPs-P-L-Arg/MWCNTs/GCE. The dynamic detection range of this sensor to MMI was 5.2–50 µM, with the detection limit of 2 µM. A new voltammetric method for determination of MMI was erected and shows good sensitivity and selectivity, very easy surface update and good stability. The analytical application of the modified electrode is demonstrated by determining MMI in biological fluids (serum).  相似文献   

18.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

19.
We have developed a stable and sensitive nonenzymatic glucose sensor by modifying a glassy carbon electrode (GCE) with a composite incorporating nickel(II) oxides and reduced graphene. The oxides were generated by directly electrodepositing nickel on the GCE with a graphene modifier using a multi-potential pulse process, and then oxidizing nickel to nickel(II) oxides by potential cycling. In comparison to the conventional nickel(II) oxides-modified GCE, this new nickel(II) oxides-graphene modified GCE (NiO-GR/GCE) has an about 1.5 times larger current response toward the nonenzymatic oxidation of glucose in alkaline media. The response to glucose is linear in the 20 μM to 4.5 mM concentration range. The limit of detection is 5 μM (at a S/N of 3), and the response time is very short (<3 s). Other beneficial features include selectivity, reproducibility and stability. A comparison was performed on the determination of glucose in commercial red wines by high-performance liquid chromatography (HPLC) and revealed the promising aspects of this sensor with respect to the determination of glucose in real samples.
Figure
A stable and sensitive nonenzymatic glucose sensor is developed by preparing the nickel(II) oxides-reduced graphene nanocomposite modified glassy carbon electrode (NiO-GR/GCE), and then used to detect the glucose contents in the commercial red wines. This NiO-GR/GCE also has a high selectivity  相似文献   

20.
《Analytical letters》2012,45(7):1236-1247
Abstract

The 6-ferrocenylhexanethiol (FcC6SH) functionalized multiwall carbon nanotubes (MWNTs) modified glassy carbon electrode (FcC6SH/MWNTs/GCE) was easily fabricated and used for the sensitive detection of NADH. Cyclic voltammetric and amperometric methods were used to study the behavior of NADH on the FcC6SH/MWNTs/GCE. A broader linear response range to the NADH concentration from 5 µM to 1.5 mM with a correlation coefficient of 0.9982 was obtained. The detection limit was 0.54 µM. The synergetic effects of FcC6SH and MWNTs make the modified electrode highly sensitive to NADH. In addition, the modified electrode can decrease the fouling of the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号