首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
trans-Resveratrol was evaluated in a stability study. Reverse-phase high-performance liquid chromatography with a diode array detector was used for the comparison of stressed and reference samples. Aqueous ethanolic solutions were examined under variable conditions. The following parameters were investigated: the time of storage, exposure to sunlight for up to 30 days, temperature from 5 to 80°C, pH from 2.9 to 10.2, trans-resveratrol concentrations from 0.5 to 100?mg?L?1, and 3, 10, 20, and 50% ethanol. The cis/trans equilibrium position was significantly influenced by the resveratrol concentration. The trans-resveratrol isomer was stable only at solutions more concentrated than 25?mg?L?1 that were stable for 30 days in a refrigerator or at room temperature protected from light. Degradation of no more than 10% was observed at temperatures lower than 50°C and pH values lower 7.43.  相似文献   

2.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

3.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

4.
The effect of 2-hydroxypropyl-β-cyclodextrin (HPβCD) on solubility, stability and oral bioavailability of curcumin by external factors adjustment, was investigated with an aim of a simple, stable and effective formulation. The phase solubility studies showed the solubility of curcumin increased slightly with increasing pH. However, the apparent stability constant (K S) were found to decrease with increasing pH from 1.29?×?104?M?1 at pH 3.0 to 5.22?×?103?M?1 at pH 7.0. The thermodynamic parameters were calculated for inclusion complex formation in aqueous solution. Interestingly, it could be concluded that the degrees of curcumin stability improved by HPβCD grew with increasing drug–cyclodextrin binding ability. Furthermore, in vivo study not only revealed that the bioavailability of curcumin after oral administration to rats was significantly improved by curcumin/HPβCD inclusion complex, but also showed more dramatic changes in the plasma concentration–time curve (1752.76–866.70?ng?mL?1?h) and the peak plasma concentration (370.10–178.11?ng?mL?1) of drug by formation of complexes in pH 3–7 solution.  相似文献   

5.
The stability of α-bromophenylacetic acid (BPAA) in 50% aqueous methanol solution has been tested. CE in different running buffers was used to separate BPAA from the decomposition reaction products α-hydroxyphenylacetic (mandelic) acid and α-methoxyphenylacetic acid. Suitable CE separation of all three compounds and other product, bromide, was achieved in 60 mmol/L formate buffer (pH 3.0) at −30 kV in 50 μm (i.d.) poly(vinyl alcohol)-coated fused silica capillary (30 cm/24.5 cm) with UV detection at 200 nm. The CE method was applied to determine the reaction order of the decomposition of BPAA (0.47 mmol/L) via nucleophilic substitution in 50% aqueous methanol. The first-order reaction kinetics was confirmed by linear and non-linear regression, giving the rate constants 1.52 × 10−4 ± 2.76 × 10−5 s−1 and 7.89 × 10−5 ± 5.02 × 10−6 s−1, respectively. Additionally, the degradation products were identified by CE coupled to mass spectrometric (MS) detection. The CE–MS experiments carried out in 60 mmol/L formate buffer (pH 3.0) and in 60 mmol/L acetate buffer (pH 5.0) confirmed the results obtained by CE–UV. Furthermore, the stability of BPAA in polar solvents was tested by 1H NMR experiments. Our results provide strong evidence of the instability and fast degradation of BPAA in 50% aqueous methanol indicating that BPAA is not suitable as the model analyte for chiral separations.  相似文献   

6.
The role of C? C bond‐forming reactions such as aldol condensation in the degradation of organic matter in natural environments is receiving a renewed interest because naturally occurring ions, ammonium ions, NH+4, and carbonate ions, CO32?, have recently been reported to catalyze these reactions. While the catalysis of aldol condensation by OH? has been widely studied, the catalytic properties of carbonate ions, CO32?, have been little studied, especially under environmental conditions. This work presents a study of the catalysis of the aldol condensation of acetaldehyde in aqueous solutions of sodium carbonate (0.1–50 mM) at T = 295 ± 2 K. By monitoring the absorbance of the main product, crotonaldehyde, instead of that of acetaldehyde, interferences from other reaction products and from side reactions, in particular a known Cannizzaro reaction, were avoided. The rate constant was found to be first order in acetaldehyde in the presence of both CO32? and OH?, suggesting that previous studies reporting a second order for this base‐catalyzed reaction were flawed. Comparisons between the rate constants in carbonate solutions and in sodium hydroxide solutions ([NaOH] = 0.3–50 mM) showed that, among the three bases present in carbonate solutions, CO32?, HCO3?, and OH?, OH? was the main catalyst for pH ≤ 11. CO32? became the main catalyst at higher pH, whereas the catalytic contribution of HCO3? was negligible over the range of conditions studied (pH 10.3–11.3). Carbonate‐catalyzed condensation reactions could contribute significantly to the degradation of organic matter in hyperalkaline natural environments (pH ≥ 11) and be at the origin of the macromolecular matter found in these environments. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 676–686, 2010  相似文献   

7.
We have developed two methods for the quantitation of gabapentin in human plasma. They are based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) with and without solid-phase extraction (SPE) and the derivatizing reagent 5-(4,6-dichlorotriazinyl)amino fluoresencin. The conditions for derivatization, separation and extraction were investigated in detail, and the optimal labeling conditions include a temperature of 40?°C, a reaction time of 30?min, and the use of a borate buffer of pH 9.0 as the reaction medium. A borate buffer of pH 9.2 served as a background electrolyte for CE separations. The CE-LIF and SPE-CE-LIF methods have linear ranges of 5–200?nmol?L?1 and 0.2–10?nmol?L?1, respectively, and the limits of detection are 0.5 and 0.02?nmol?L?1, respectively. The SPE-CE-LIF method was successfully applied to the determination of gabapentin in blood plasma samples.
Figure
Two methods have been developed for the quantization of gabapentin (GBP) in human plasma. They are based on capillary electrophoresis-laser induced fluorescence detection (CE-LIF) with and without solid-phase extraction (SPE) and the derivatizing reagent 5-(4,6-dichlorotriazinyl)aminofluorescein.  相似文献   

8.
Nanosized magnetic Fe3O4 synthesized via sonochemical route was used as a photocatalyst for the degradation of azo dyes, methyl red and congo red. The novelty of the photo catalyst is its easy recovery by magnetic force and its recycling ability due to its long-term stability, in addition to its cost effectiveness, non-toxicity and non-carcinogenicity. A detailed feasibility study has been carried out on the photocatalytic degradation of the azo dyes at various pH and at various concentrations of photocatalyst, dye and H2O2. The presence of photocatalyst is found to significantly accelerate the degradation of azo dyes and the optimal dosage is found to be 0.075 and 0.2?g/l for methyl red and congo red, respectively. Langmuir?CHinshelwood kinetic analysis revealed pseudo-first-order kinetics for the photocatalytic degradation of the dyes and the degradation products were identified using spectral analysis. The degradation study revealed the following order of reactivity: Photo-Fe3O4?>?Photo-H2O2?>?Fe3O4?>?H2O2.  相似文献   

9.
One‐dimensional nanofiber of p‐type NiO/n‐type ZnO heterojunctions with various molar ratios of Ni to Zn at different calcination temperatures were successfully synthesized using the electrospinning method, and they were fully characterized. The photocatalysts thus obtained were applied in aqueous solutions for rhodamine B (RDB) and methylene blue (MB) degradation. The p–n heterojunctions built among the cubic structure NiO and hexagonal structure ZnO in the composite nanofiber are responsible for generation of electrons and holes and subsequently superoxide and hydroxyl radical production by carriers which lead to degradation of the dyes in solution. The composite nanofibers (ZnNi1) calcined at 550 °C for 3 h showed the highest photocatalytic activity for degradation of the dyes in aqueous solution. The optimum values were found to be 180 min, 7.0, 1 g l?1 and 3.0 and 3.0 mg l?1 for irradiation time, pH, photocatalyst dosage and initial concentration of RDB and MB, respectively. For these optimum conditions, the photocatalytic degradation of RDB and MB was found to be 99.37 and 98.44%, respectively. The maximum photodegradation of RDB and MB using ZnNi1 was 59.41 and 65.43%, respectively. First‐order kinetics based on the Langmuir–Hinshelwood model successfully fitted the experimental data.  相似文献   

10.
Double stimuli-responsive copolymer of N-(3-(diethylamino)propyl)-N-methylacrylamide and N,N-diethylacrylamide (molar mass M ≈ 32,000?g?mol?1) in buffer solutions was studied by the static and dynamic light scattering and turbidimetry. The experiments were performed within pH interval from 7 to 13 and in a wide concentration range. Two types of scattering species were observed in solutions of all concentrations and pH at room temperatures. They were macromolecular unimers and loose aggregates. The increase in concentration and pH led to decrease in phase separation temperatures and width of phase transition.  相似文献   

11.
12.
The spectral characteristics of novel hetarylazo dyes containing triazole and hydrogenated quinoline moieties and the spectral and time-resolved parameters of photochemical processes occurring upon their photoexcitation were studied by stationary spectrophotometry and pulse photolysis. All compounds have an intense absorption maximum in the visible spectral range at 470–500 nm with ? = 17000–27000 L mol?1 cm?1. Upon excitation with the visible light, reversible trans-cis photoisomerization occurs, which is followed by thermal cis-trans isomerization. The temporal parameters of the isomerization depend on the azo dye structure. The introduction of bulky substituents in the triazole and hydroquinoline moieties results in the increase in characteristic times of the thermal transformation of the generated transient species from milliseconds to seconds and in the partial irreversibility of the process.  相似文献   

13.
《印度化学会志》2022,99(3):100340
Degradation of toxic organic pollutants and dyes from industrial wastewater by photocatalysis is an environmentally friendly technique. The degradation of Acridine Yellow G (AYG) was investigated in aqueous solutions employing BaCrO4 as a heterogeneous photocatalyst under eco-friendly LED irradiation. We studied the mineralisation kinetics of AYG by monitoring the dye concentration and chemical oxygen demand (COD) as a function of time. The impact of pH, concentrationdye, reactants, catalyst, Fenton reagent, salt effect, and temperature on the kinetics were investigated. The initial addition of optimal amounts of hydrogen peroxide and potassium persulfate increased the degradation rate, while NaCl and Na2CO3 retarded the reaction. The efficiency of visible light, LED (12 ?W) irradiation, compared with the traditional visible light source, the halogen lamp (500 ?W). At the optimum pH 10, the AYG degradation obeyed pseudo-first-order kinetics. With BaCrO4 asa heterogeneous photocatalyst, complete mineralisation of AYG was achieved in 35 ?min. This process is green, eco-friendly, and the catalyst is easily recoverable and reusable five times without loss of catalytic efficiency.  相似文献   

14.
《Electroanalysis》2005,17(12):1103-1111
Reagentless biosensors sensitive to hydrogen peroxide have been developed and compared. These biosensors are comprised of a carbon paste electrode modified with horseradish peroxidase (HRP) and one phenothiazine (methylene blue), one phenoxazine (meldola's blue) or one phenazine (phenazine methosulfate) dye adsorbed on silica gel modified with niobium oxide (SN). The enzyme was immobilized onto the graphite powder by cross‐linking with glutaraldehyde and mixing with one of the electron transfer mediators (dyes) adsorbed on SN. The amperometric response was based on the electrocatalytic properties of the dye to mediate electrons, which were generated in the enzymatic reaction of hydrogen peroxide under catalysis of HRP. The dependence on the biosensor response in terms of pH, buffer, HRP amounts and applied potential was investigated. The best results were found with a biosensor containing methylene blue dye showing an excellent operational stability (around 92% of the activity was maintained after 300 determinations). The proposed biosensor also presented good sensitivity (32.87 nA cm?2 μmol?1 L) allowing hydrogen peroxide quantification at levels down to 0.52×10?6 mol L?1 an optimum response at pH 6.8 and at a potential of ?50 mV (vs. SCE) and showing a wide linear response range (from 1 to 700 μmol L?1 for hydrogen peroxide).  相似文献   

15.
Cyclosophoraoses [cyclic β-(1,2)-glucan, Cys] isolated from Rhizobium leguminosarum biovar trifolii TA-1 have unique structures and high solubility, which make it a potent solubilizer for host–guest inclusion complexation. Succinylated cyclosophorasoses (S-Cys) were also synthesized by chemically modifying isolated cyclosophoraoses. In ultraviolet-visible studies using naproxen (NAP), Cys was shown to form the most stable complexes with NAP (K 1:1?=?2457.9?M?1), which was followed by the negatively charged S-Cys (K 1:1?=?357.1?M?1) at pH 3.4. A further strong reduction in the complex stability constant was observed at pH 7.5. When the reduction in the stability constant was compared with other cyclic oligosaccharides (Cys; 119.2?M?1, CD; 14.48?M?1 and HP-CD; 6.75?M?1), S-Cys (K 1:1?=?5.6?M?1) was shown to have the highest decrease in stability constant. These results suggest that the S-Cys could regulate the efficiency of inclusion complexation at external pH values. NMR studies of complex formation between NAP and Cys also showed a different correlation pattern at pH 3.4 and 7.5. This difference in correlation demonstrates that the inclusion complexes between Cys and NAP formed as a result of the differential charge distribution of the carboxyl groups of NAP. The pH-dependent inclusion behavior of Cys for NAP was also evaluated using molecular docking simulations.  相似文献   

16.
The HPLC separation of arsenite, arsenate, methylarsonic acid and dimethylarsinic acid has been studied in the past but not in a systematic manner. The dependence of the retention times of these arsenic compounds on the pH of the mobile phase, on the concentration and the chemical composition of buffer solutions (phosphate, acetate, potassium hydrogen phthalate) and on the presence of sodium sulfate or nickel sulfate in the mobile phase was investigated using a Hamilton PRP-X100 anion-exchange column. With a flame atomic absorption detector and arsenic concentrations of at least 10 mg dm?3 all investigated mobile phases will separate the four arsenic compounds at appropriate pH values in the range 4–8. The shortest analysis time (?3 min) was achieved with a 0.006 mol dm?3 potassium hydrogen phthalate mobile phase at pH 4, the longest (?10 min) with 0.006 mol dm?3 sodium sulfate at pH 5.9 at a flow rate of 1.5 cm3 min?1. With a graphite furnace atomic absorption detector at the required, much lower, flow rate of ?0.2 cm3 min?1 acceptable separations were achievable only with the pH 6 phosphate buffer (0.03 mol dm?3) and the nickel sulfate solution (0.005 mol dm?3) as the mobile phase. To become detectable approximately 100 ng arsenic from each arsenic compound (100 μl injection) must be chromatographed with the phosphate buffer, and approximately 10 ng with the nickel sulfate solution.  相似文献   

17.
Doxorubicin (DOX) belongs to the group of anthracycline antibiotics with very effective anticancer properties. On the other hand, the cardiotoxic effects limit its application over the maximum cumulative dose. To overcome this obstacle, encapsulation of this drug into the protective nanotransporter such as apoferritin is beneficial. In this study, fluorescent behavior of DOX in various solvents was determined by fluorescence spectrometry, demonstrating the fluorescence quenching effect of water, which is often used as a solvent. It was found that by increasing the amount of the organic phase in the DOX solvent the dynamic quenching is significantly suppressed. Ethanol, acetonitrile and dimethyl sulfoxide were tested and the best linearity of the calibration curve was obtained when above 50 % of the solvent was present in the binary mixture with water. Moreover, pH influence on the DOX fluorescence was also observed within the range of 4–10. Two times higher fluorescence intensity was observed at pH 4 compared to pH 10. Further, the DOX behavior in capillary electrophoresis (CE) was investigated. Electrophoretic mobilities (CE) in various pH of the background electrolyte were determined within the range from 16.3 to ?13.3 × 10 ?9 m?2 V?1 s?1. Finally, CE was also used to monitor the encapsulation of DOX into the cavity of apoferritin as well as the pH-triggered release.  相似文献   

18.
New symmetrical and non-symmetrical benzoBODIPYs have been synthesized from diketones. For the two series the 3 and 5 positions have been substituted by different aromatic rings and onto benzo sub-units different groups have been introduced. The methodology of diketones self-condensation provides symmetrical dyes. By cross-condensation reaction, these positions can be differentiated and specific functions connected to the desired positions. These molecules have been fully characterized and their optical properties analyzed by both experimental and theoretical means. They are red to NIR emitters with a range of emission from 679 to 780?nm in CH2Cl2. They show maxima of absorption between 651?nm and 732?nm, strong ε of around 100,000?M?1?cm?1 and quite good quantum yields from 16% to 75%. The thienyl moiety on α-positions of the nitrogens generates the highest red shifts. Meanwhile dimethylamino groups in the same positions bring, besides chemical properties, proton sensitive dyes. The bromine atom onto the dibenzo sub-units exhibits good reactivity through Sonogashira coupling reactions. This approach provides multifunctional red to NIR dyes with endless possibilities of combination of chemical properties.  相似文献   

19.
Despite photocatalytic degradation is studied generally focusing the catalyst, its interaction with the contaminant molecule plays a fundamental role in the efficiency of that process. Then, we proposed a comparative study about the photodegradation of two well‐known dyes, with different acidity/basicity – Methylene Blue (MB) and Rhodamine B (RhB), catalyzed by TiO2 nanoparticles, varying both dye and photocatalyst concentrations. The results showed that the amphoteric character of MB molecules, even in a range of concentration of 5.0–10.0 mg L?1, did not imply in pH variation in solution. Therefore, it did not affect the colloidal behavior of TiO2 nanoparticles, independent of the relative dye/catalyst concentration. The acid–base character of RhB influenced the resultant pH of the solution, implicating in different colloidal behavior of the nanoparticles and consequently, in different degradation conditions according to dye concentration. As the isoelectric point of TiO2 is between the pH range of the RhB solutions used in this study, from 1.0 to 7.5 mg L?1, the resultant pH was the key factor for degradation conditions, from a well dispersed to an agglomerated suspension.  相似文献   

20.
L-DOPA is an important neurotransmitter that is found in the brain and as a hormone in the circulatory system. We report in this article the similarities and differences in behaviour of this important neurotransmitter as a chelating agent among some divalent and trivalent metal ions using potentiometric titration in aqueous solutions at 25.0?±?1.0°C. The careful and detailed potentiometric titrations of L-DOPA with Al3+, Cr3+, Fe3+, Cu2+, and Zn2+ are discussed and compared. UV-Vis-spectroscopy is utilized for both the free L-DOPA and for the Fe3+/L-DOPA system. The characteristic peak due to the π?→?π* transition of the free L-DOPA at ~280?nm (ε280?nm?=?1927?±?65?M?1?cm?1 between pH values of 2.0 to 3.0) disappeared when the iron solution was added to the L-DOPA sample in the same pH range. For the Fe3+/L-DOPA system we have observed a new peak at 470?nm with ε470?=?800?±?50?M?1?cm?1. These comparison studies of the similarities and differences among these di- and tri-valent metal ions shed light on these systems in aqueous solutions. The appropriate metal simulation and speciation diagrams were constructed using the model that fit the titration data points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号