首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

2.
Chiral bicyclic α‐amino acid (R,R)‐Ab5,6=c with stereogenic centers at the γ‐position of fused‐ring junctions, and its enantiomer (S,S)‐Ab5,6=c, were synthesized. The CD spectra of (R,R)‐Ab5,6=c oligomers indicated that the (R,R)‐Ab5,6=c hexapeptide formed a mixture of right‐handed (P)‐ and left‐handed (M)‐310‐helices, while, in the (R,R)‐Ab5,6=c nonapeptide, a right‐handed (P)‐310‐helix slightly dominated over the (M)‐helix. X‐Ray crystallographic analyses of (S,S)‐tripeptide and (R,R)‐hexapeptide revealed that both the tripeptide and hexapeptide formed a mixture of (P)‐ and (M)‐310‐helices, respectively. These results indicated that the side‐chain environments around the stereogenic centers are particularly important to control the helical‐screw handedness of foldamers.  相似文献   

3.
Chiral cyclic α,α‐disubstituted amino acids, (3S,4S)‐ and (3R,4R)‐1‐amino‐3,4‐(dialkoxy)cyclopentanecarboxylic acids ((S,S)‐ and (R,R)‐Ac5cdOR; R: methyl, methoxymethyl), were synthesized from dimethyl L ‐(+)‐ or D ‐(?)‐tartrate, and their homochiral homoligomers were prepared by solution‐phase methods. The preferred secondary structure of the (S,S)‐Ac5cdOMe hexapeptide was a left‐handed (M) 310 helix, whereas those of the (S,S)‐Ac5cdOMe octa‐ and decapeptides were left‐handed (M) α helices, both in solution and in the crystal state. The octa‐ and decapeptides can be well dissolved in pure water and are more α helical in water than in 2,2,2‐trifluoroethanol solution. The left‐handed (M) helices of the (S,S)‐Ac5cdOMe homochiral homopeptides were exclusively controlled by the side‐chain chiral centers, because the cyclic amino acid (S,S)‐Ac5cdOMe does not have an α‐carbon chiral center but has side‐chain γ‐carbon chiral centers.  相似文献   

4.
Tetrameric H10/12 helix stabilization was achieved by the application of aromatic side‐chains in β‐peptide oligomers by intramolecular backbone–side chain CH–π interactions. Because of the enlarged hydrophobic surface of the oligomers, a further aim was the investigation of the self‐assembly in a polar medium for the β‐peptide H10/12 helices. NMR, ECD, and molecular modeling results indicated that the oligomers formed by cis‐[1S,2S]‐ or cis‐[1R,2R]‐1‐amino‐1,2,3,4‐tetrahydronaphthalene‐2‐carboxylic acid (ATENAC) and cis‐[1R,2S]‐ or cis‐[1S,2R]‐2‐aminocyclohex‐3‐enecarboxylic acid (ACHEC) residues promote stable H10/12 helix formation with an alternating backbone configuration even at the tetrameric chain length. These results support the view that aromatic side‐chains can be applied for helical structure stabilization. Importantly, this is the first observation of a stable H10/12 helix with tetrameric chain‐length. The hydrophobically driven self‐assembly was achieved for the helix‐forming oligomers, seen as vesicles in transmission electron microscopy images. The self‐association phenomenon, which supports the helical secondary structure of these oligomers, depends on the hydrophobic surface area, because a higher number of aromatic side‐chains yielded larger vesicles. These results serve as an essential element for the design of helices relating to the H10/12 helix. Moreover, they open up a novel area for bioactive foldamer construction, while the hydrophobic area gained through the aromatic side‐chains may yield important receptor–ligand interaction surfaces, which can provide amplified binding strength.  相似文献   

5.
Benzenehexapyrrole‐α,ω‐dialdehyde, composed of a pair of formyltripyrrole units with a 1,3‐phenylene linker, was metallated to give dinuclear single‐stranded helicates. X‐ray studies of the bis‐nickel(II) complex showed a helical C2 form with a pair of helical–metal coordination planes of a 3N+O donor set. The terminal aldehyde was readily converted into the imine by optically active amines, whereby helix‐sense bias was induced. Bis‐nickel(II) and bis‐palladium(II) complexes of the benzenehexapyrrole‐α,ω‐diimines were studied to show that an enantiomer pair of the helical C2 form are interchanged by slow flipping of each coordination plane and fast rotation around the C(benzene)?C(pyrrole) bond. The helical screw in the bis‐nickel(II) complexes was biased to one side in more than 95 % diastereoselectivity, which was achieved by using a variety of optically active amines, such as (R)‐1‐cyclohexylethylamine, (S)‐1‐ phenylethylamine, L ‐Phe(OEt) (Phe=phenylalanine), and (R)‐valinol. The nickel complexes showed much better diastereoselectivity than the corresponding palladium complexes.  相似文献   

6.
A new synthesis of (?)‐(R)‐muscone ((R)‐ 1 ) by means of enantioselective protonation of a bicyclic ketone enolate as the key step (see 6 →(S)‐ 4 in Scheme 2) is presented. The C15 macrocyclic system is obtained by ozonolysis (Scheme 7).  相似文献   

7.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

8.
An optically active (S)‐α‐ethylleucine ((S)‐αEtLeu) as a chiral α‐ethylated α,α‐disubstituted α‐amino acid was synthesized by means of a chiral acetal auxiliary of (R,R)‐cyclohexane‐1,2‐diol. The chiral α‐ethylated α,α‐disubstituted amino acid (S)‐αEtLeu was introduced into the peptides constructed from 2‐aminoisobutyric acid (=dimethylglycine, Aib), and also into the peptide prepared from diethylglycine (Deg). The X‐ray crystallographic analysis revealed that both right‐handed (P) and left‐handed (M) 310‐helical structures exist in the solid state of CF3CO‐(Aib)2‐[(S)‐αEtLeu]‐(Aib)2‐OEt ( 14 ) and CF3CO‐[(S)‐αEtLeu]‐(Deg)4‐OEt ( 18 ), respectively. The IR, CD, and 1H‐NMR spectra indicated that the dominant conformation of pentapeptides 14 and CF3CO‐[(S)‐αEtLeu]‐(Aib)4‐OEt ( 16 ) in solution is a 310‐helical structure, and that of 18 in solution is a planar C5 conformation. The conformation of peptides was also studied by molecular‐mechanics calculations.  相似文献   

9.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

10.
A short approach for the synthesis of 3,4‐fused γ‐lactone‐γ‐lactam bicyclic systems ( 1 ) in diastereomeric mixtures from chiral D ‐alanine methyl ester hydrochloride is described. The key step towards lactonisation is the reduction of the carbonyl ketone of the 5R‐configured 3,5‐dimethylpyrrolidine‐2,4‐dione diastereomers ( 8 ) via sodium borohydride in the presence of hydrochloric acid. With the presence of ethyl acetyl functionality at C3‐position, ester hydrolysis of 8 occurred concomitantly with keto reduction leading to lactonisation and eventually affording the anticipated (3S,4S,5R), (3R,4R,5R), (3R,4S,5R) and (3S,4R,5R) bicyclic moieties. The formation of the fused systems was confirmed by mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses.  相似文献   

11.
(1R,5S,6S,8R)‐6,8,9‐Trihydroxy‐3‐oxo‐2,4‐diazabicyclo[3.3.1]nonan‐7‐ammonium chloride hydrate ( 3 Cl⋅H2O) and (1R,5S,6S,8R)‐7‐amino‐6,8,9‐trihydroxy‐2,4‐diazabicyclo[3.3.1]nonan‐3‐one ( 4 ) have been prepared, and their crystal structures have been determined from single‐crystal X‐ray diffraction data. Both compounds consist of a bicyclic skeleton with the three N‐atoms in an all‐cis‐1,3,5‐triaxial arrangement. Considerable repulsion between these axial N‐atoms is indicated by a significant distortion of the two cyclohexane chairs and by increased N⋅⋅⋅N distances. The lone pair of the free amino group of 4 is involved in intermolecular H‐bonding and is turned away from the adjacent carbonyl C‐atom of the urea moiety. The structural properties together with the observed reactivity do not provide any evidence for an intramolecular donor‐acceptor interaction between the carbonyl C‐ and the amine N‐atom.  相似文献   

12.
A variety of model peptides, including four complete homologous series, to the pentamer level, characterized by the recently proposed binaphthyl‐based, axially chiral, Cα‐tetrasubstituted, cyclic α‐amino acid Bin, in combination with Ala, Gly, or Aib residues, was synthesized by solution methods and fully characterized. The solution conformational propensity of these peptides was determined by FT‐IR absorption and 1H‐NMR techniques. Moreover, the molecular structures of the free amino acid (S)‐enantiomer and an Nα‐acylated dipeptide alkylamide with the heterochiral sequence ‐(R)‐Bin‐Phe‐ were assessed in the crystal state by X‐ray diffraction. Taken together, the results point to the conclusion that β‐bends and 310 helices are preferentially adopted by Bin‐containing peptides, although the fully extended conformation would also be adopted in solution by the short oligomers to some extent. We also confirmed the tendency of (R)‐Bin to fold a peptide chain into right‐handed bend and helical structures. The absolute configuration of the Bin residue(s) was correlated with the typically intense exciton‐split Cotton effect of the 1Bb binaphthyl transition near 225 nm.  相似文献   

13.
2,2,6,6‐Tetramethyl‐1‐piperidinyloxy (TEMPO)‐ and 2,2,5,5‐tetramethyl‐1‐pyrrolidinyloxy (PROXYL)‐containing (R)‐1‐methylpropargyl TEMPO‐4‐carboxylate ( 1 ), (R)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 2 ), (rac)‐1‐methylpropargyl PROXYL‐3‐carboxylate ( 3 ), (S)‐1‐propargylcarbamoylethyl TEMPO‐4‐carboxylate ( 4 ), and (S)‐1‐propargyloxycarbonylethyl TEMPO‐4‐carboxylate ( 5 ) (TEMPO, PROXYL) were polymerized to afford novel polymers containing the TEMPO and PROXYL radicals at high densities. Monomers 1–3 and 5 provided polymers with moderate number‐average molecular weights of 8200–140,900 in 49–97% yields in the presence of (nbd)Rh+[η6‐C6H5B?(C6H5)3], whereas 4 gave no polymer with this catalyst but gave polymers possessing low Mn (3800–7500) in 56–61% yield with [(nbd)RhCl]2‐Et3N. Poly( 1 ), poly( 2 ), and poly( 4 ) took a helical structure with predominantly one‐handed screw sense in THF and CHCl3 as well as in film state. The helical structure of poly( 1 ) and poly( 2 ) was stable upon heating and addition of MeOH, whereas poly( 4 ) was responsive to heat and solvents. All of the free radical‐containing polymers displayed the reversible charge/discharge processes, whose capacities were in a range of 43.2–112 A h/kg. In particular, the capacities of poly( 2 )–poly( 5 )‐based cells reached about 90–100% of the theoretical values regardless of the secondary structure of the polymer, helix and random. Poly( 1 ), poly( 2 ), and poly( 4 ) taking a helical structure exhibited better capacity tolerance towards the increase of current density than nonhelical poly( 3 ) and poly( 5 ) did. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5431–5445, 2007  相似文献   

14.
The title enanti­omorphic compounds, C16H23NO4S, have been obtained in an enanti­omerically pure form by crystallization from a diastereomeric mixture either of (2S,4S)‐ and (2R,4S)‐ or of (2R,4R)‐ and (2S,4R)‐2‐tert‐butyl‐4‐methyl‐3‐(4‐tolyl­sulfon­yl)‐1,3‐oxazolidine‐4‐carbaldehyde. These mixtures were prepared by an aziridination rearrangement process starting with (S)‐ or (R)‐2‐tert‐butyl‐5‐methyl‐4H‐1,3‐dioxine. The crystal structures indicate an envelope conformation of the oxazolidine moiety for both compounds.  相似文献   

15.
In the title compound, C17H32O2S3, the dodecyl chain and the trithiocarbonate unit adopt a nearly planar all‐trans conformation, while the carboxyl group is synclinal to this chain direction. The molecules are linked by pairs of inversion‐related O—H...O hydrogen bonds to form centrosymmetric dimers of R22(8) type, and dimers related by translation are linked by C—H...O hydrogen bonds to form a chain of edge‐fused rings, or a molecular ladder, containing alternating R22(8) and R44(20) rings.  相似文献   

16.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

17.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
In the title compound, C24H36N6O6·C2H6OS, the carbonyl groups are in an antiperiplanar conformation, with O=C—C=O torsion angles of 178.59 (15) and −172.08 (16)°. An intramolecular hydrogen‐bonding pattern is depicted by four N—H...O interactions, which form two adjacent S(5)S(5) motifs, and an N—H...N interaction, which forms an S(6) ring motif. Intermolecular N—H...O hydrogen bonding and C—H...O soft interactions allow the formation of a meso‐helix. The title compound is the first example of a helical 1,2‐phenylenedioxalamide. The oxalamide traps one molecule of dimethyl sulfoxide through N—H...O hydrogen bonding. C—H...O soft interactions give rise to the two‐dimensional structure.  相似文献   

19.
The structures of diastereomeric pairs consisting of (S)‐ and (R)‐2‐methylpiperazine with (2S,3S)‐tartaric acid are both 1:1 salts, namely (S)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (I), and (R)‐2‐methylpiperazinium (2S,3S)‐tartrate dihydrate, C5H14N22+·C4H4O62−·2H2O, (II), which reveal the formation of well defined ammonium carboxylate salts linked via strong intermolecular hydrogen bonds. Unlike the situation in the more soluble salt (II), the alternating columns of tartrate and ammonium ions of the less soluble salt (I) are packed neatly in a grid around the a axis, which incorporates water molecules at regular intervals. The increased efficiency of packing for (I) is evident in its lower `packing coefficient', and the hydrogen‐bond contribution is stronger in the more soluble salt (II).  相似文献   

20.
A new three‐residue turn in β peptides nucleated by a 12/10‐mixed helix is presented. In this design, β peptides were derived from the 1:1 alternation of C‐linked carbo‐β‐amino acid ester [BocNH‐(R)‐β‐Caa(r)‐OMe] (Boc=tert‐butyloxycarbonyl), which consisted of a D ‐ribo furanoside side chain, and β‐hGly residues. The hexapeptide with (R)‐β‐Caa(r) at the N terminus showed the ‘turn’ stabilized by a 14‐membered NH(4) ??? CO(6) hydrogen bond at the C terminus nucleated by a robust 12/10‐mixed helix, thus providing a ‘helix‐turn’ (HT) motif. The turn and the helix were additionally stabilized by intraresidue electrostatic interaction between the furan oxygen in the carbohydrate side chain and NH in the backbone. However, the hexapeptide with a β‐hGly residue at the N terminus demonstrated the presence of a 10/12 helix through its entire length, which again showed the intraresidue interaction between NH and furan oxygen. The intraresidue NH ??? O? Me electrostatic interactions observed in the monomer, however, were absent in the peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号