首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of self‐assembled “double saddle”‐type trinuclear complexes of [Pd3L′3 L 2] formulation have been synthesized by complexation of a series of cis‐protected palladium(II) components with a slightly divergent “E‐shaped” non‐chelating tridentate ligand, 1,1′‐(pyridine‐3,5‐diyl)bis(3‐(pyridin‐3‐yl)urea ( L ). The cis‐protecting agents L′ employed in the study are ethylenediamine (en), tetramethylethylenediamine (tmeda), 2,2′‐bipyridine (bpy), and 1,10‐phenanthroline (phen), for 1 , 2 , 3 , and 4 , respectively. The crystal structures of [Pd3(tmeda)3( L )2](NO3)6 ( 2 ), [Pd3(bpy)3( L )2](NO3)6 ( 3 ), and [Pd3(phen)3( L )2](NO3)6 ( 4 ) unequivocally support the new architecture. Two of the “double saddle”‐type complexes ( 3 and 4 ) are suitably crafted with π surfaces at the strategically located cis‐protecting sites to facilitate intermolecular π–π interactions in the solid state. As a consequence, six units of the 3 (or 4 ) are assembled, by means of six‐pairs of π–π stacking interactions, in a circular geometry to form an octadecanuclear molecular ring of [(Pd3L′3 L 2)6] composition. The overall arrangement of the rings in the crystal packing is equated with the traditional Indian art form rangoli.  相似文献   

2.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

3.
Linear poly(p‐phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co‐polymer has a UV photocatalytic activity that rivals TiO2, but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co‐polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.  相似文献   

4.
Recognition and regulation of G‐quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo‐substituent to the dipyridylphenazine (dppz) ligands in the photophysical “light switch”, [Ru(bpy)2dppz]2+, and the photochemical “light switch”, [Ru(bpy)2dmdppz]2+, creates compounds with increased selectivity for an intermolecular parallel G‐quadruplex and the mixed‐hybrid G‐quadruplex, respectively. When [Ru(bpy)2dppz‐Br]2+ and [Ru(bpy)2dmdppz‐Br]2+ are incubated with the G‐quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2dmdppz‐Br]2+ with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of RuII complexes can alter G‐quadruplex selectivity, and could be useful for the rational design of in vivo G‐quadruplex probes.  相似文献   

5.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

6.
Poly(isoindigo‐alt‐3,4‐difluorothiophene) (PIID[2F]T) analogues used as “polymer acceptors” in bulk‐heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2‐b:4,5‐b′]dithiophene and 5,6‐difluorobenzotriazole). Considering that most efficient polymer‐acceptor alternatives to fullerenes (e.g. PC61BM or its C71 derivative) are based on perylenediimide or naphthalenediimide motifs thus far, branched alkyl‐substituted PIID[2F]T polymers are particularly promising non‐fullerene candidates for “all‐polymer” BHJ solar cells.  相似文献   

7.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
The reactions of dialumane [L(thf)Al? Al(thf)L] ( 1 , L=[{(2,6‐iPr2C6H3)NC(Me)}2]2?) with stilbene and styrene afforded the oxidation/insertion products [L(thf)Al(CH(Ph)? CH(Ph))AlL] ( 2 ) and [L(thf)Al(CH(Ph)? CH2)Al(thf)L] ( 3 ), respectively. In the presence of Na metal, precursor 1 reacted with butadienes, possibly through the reduced “dialumene” or the “carbene‐like” :AlL species, to yield aluminacyclopentenes [LAl(CH2C(Me)?C(Me)CH2)Na]n ( 4 a ) and [Na(dme)3][LAl(CH2C(Me)?CHCH2)] ( 4 b , dme=dimethoxyethane) as [1+4] cycloaddition products, as well as the [2+4] cycloaddition product 1,6‐dialumina‐3,8‐cyclodecadiene, [{Na(dme)}2][LAl(CH2C(Me)?C(Me)CH2)2AlL] ( 5 ). The possible mechanisms of the cycloaddition reactions were studied by using DFT computations.  相似文献   

9.
A series of poly(2‐(dimethylamino)ethyl methacrylate‐ran‐9‐(4‐vinylbenzyl)‐9H‐carbazole) (poly(DMAEMA‐ran‐VBK)) random copolymers, with VBK molar feed compositions fVBK,0 = 0.02–0.09, were synthesized using 10 mol % [tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] nitroxide (SG1) relative to 2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropionic acid (BlocBuilder) at 80 °C and 90 °C. Controlled polymerizations were observed, even with fVBK,0 = 0.02, as reflected by a linear increase in number average molecular weight (Mn) versus conversion X ≤ 0.6 with final copolymers characterized by relatively narrow, monomodal molecular weight distributions (Mw/Mn ≈ 1.5). Poly(DMAEMA‐ran‐VBK) copolymers were deemed sufficiently pseudo‐“living” to reinitiate a second batch of N,N‐dimethylacrylamide (DMAA), with very few apparent dead chains, as indicated by the monomodal shift in the gel permeation chromatography chromatograms. Poly(DMAEMA‐ran‐VBK) random copolymers exhibited tuneable lower critical solution temperature (LCST), in aqueous solution, by modifying copolymer composition, solution pH and by the addition of the water‐soluble poly(DMAA) segment. 1H NMR analysis determined that, in water, the VBK units of the poly(DMAEMA‐ran‐VBK) random copolymer were segregated to the interior of the copolymer aggregate regardless of solution temperature and that poly(DMAEMA‐ran‐VBK)‐b‐poly(DMAA) block copolymers formed micelles above the LCST. In addition, the final random copolymer and block copolymer exhibited temperature dependent fluorescence due to the VBK units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A series of fluorescent “push‐pull” tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited‐state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the “push–pull” character, which was enhanced by further introduction of an electron‐releasing Me2N group or an electron‐withdrawing NC group onto the quinoxaline unit (denoted as Me2N‐QTTH and NC‐QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL) were achieved. In particular, the maximum ΦFL of Me2N‐QTTH was 0.43 in benzene (NC‐QTTH: ΦFL=0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL=0.02). These enhancements were also explained by kinetic discussion of the excited‐state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right‐handed and left‐handed circularly polarized light) was estimated to be 3.0×10?3 for NC‐QTTH.  相似文献   

11.
Three tripodal ligands H3L1–3 containing imidazole rings were synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,3,5‐tris[(3‐formylphenoxy)methyl]benzene, 1,3,5‐tris[(3‐formylphenoxy)methyl]‐2,4,6‐trimethylbenzene, and 2,2′,2"‐tris[(3‐formylphenoxy)ethyl]amine, respectively. Trinuclear RuII polypyridyl complexes [(bpy)6Ru3H3L1–3](PF6)6 were prepared by the condensation of Ru(bpy)2Cl2 · 2H2O with ligands H3L1–3. The pH effects on the UV/Vis absorption and fluorescence spectra of the three complexes were studied, and ground‐ and excited‐state ionization constants of the three complexes were derived. The three complexes act as “off‐on‐off” fluorescence pH switch through protonation and deprotonation of imidazole ring with a maximum on‐off ratio of 5 in buffer solution at room temperature.  相似文献   

12.
The pentaaryl borole (Ph*C)4BXylF [Ph*=3,5‐tBu2(C6H3); XylF=3,5‐(CF3)2(C6H3)] reacts with low‐valent Group 13 precursors AlCp* and GaCp* by two divergent routes. In the case of [AlCp*]4, the borole reacts as an oxidising agent and accepts two electrons. Structural, spectroscopic, and computational analysis of the resulting unprecedented neutral η5‐Cp*,η5‐[(Ph*C)4BXylF] complex of AlIII revealed a strong, ionic bonding interaction. The formation of the heteroleptic borole‐cyclopentadienyl “aluminocene” leads to significant changes in the 13C NMR chemical shifts within the borole unit. In the case of the less‐reductive GaCp*, borole (Ph*C)4BXylF reacts as a Lewis acid to form a dynamic adduct with a dative 2‐center‐2‐electron Ga?B bond. The Lewis adduct was also studied structurally, spectroscopically, and computationally.  相似文献   

13.
2‐Arylidene‐1,3‐indanediones undergo a regioselective 1,3‐dipolar cycloaddition reaction with the azomethine ylide derived from isatin and sarcosine by decarboxylative route affording a series of 1‐N‐methyl — spiro[2.3′“]oxindole‐spiro[3.2”]indane‐1“,3”‐diones‐4‐aryl pyrrolidines. The structures were established by spectroscopic techniques as well as single crystal X‐ray analysis. Density functional theory at B3L YP/6‐31G* and the semi empirical AM1 calculations were employed to rationalize the observed results. The experimental regioselectivity of 1,3‐dipolar cycloadditions could be corroborated nicely with the computed Fukui frontier orbital energies and reaction energies.  相似文献   

14.
La3OCl[AsO3]2: A Lanthanum Oxide Chloride Oxoarsenate(III) with a “Lone‐Pair” Channel Structure La3OCl[AsO3]2 was prepared by the solid‐state reaction between La2O3 and As2O3 using LaCl3 and CsCl as fluxing agents in evacuated silica ampoules at 850 °C. The colourless crystals with pillar‐shaped habit crystallize tetragonally (a = 1299.96(9), c = 558.37(5) pm, c/a = 0.430) in the space group P42/mnm (no. 136) with four formula units per unit cell. The crystal structure contains two crystallographically different La3+ cations. (La1)3+ is coordinated by six oxygen atoms and two chloride anions in the shape of a bicapped trigonal prism (CN = 8), whereas (La2)3+ carries eight oxygen atoms and one Cl? anion arranged in the shape of tricapped trigonal prism (CN = 9). The isolated pyramidal [AsO3]3? anions (d(As–O) = 175–179 pm) consist of three oxygen atoms (O2 and two O3), which surround the As3+ cations together with the free, non‐binding electron pair (lone pair) Ψ1‐tetrahedrally (?(O–As–O) = 95°, 3×). One of the three crystallographically independent oxygen atoms (O1), however, is exclusively coordinated by four (La2)3+ cations in the shape of a real tetrahedron (d(O–La) = 236 pm, 4×). These [(O1)(La2)4]10+ tetrahedra form endless chains in the direction of the c axis through trans‐edge condensation. Empty channels, constituted by the lonepair electrons of the Cl? anions and the As3+ cations in the Ψ1‐tetrahedral oxoarsenate(III) anions [AsO3]3?, run parallel to [001] as well.  相似文献   

15.
Reactions of (Et4N)[Tp*WS3] [Tp* is hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate] with CuSCN in MeCN in the presence of melamine afforded the title neutral dimeric cluster [Cu4W2(C15H22BN6)2(NCS)2S6(C2H3N)2] or [Tp*W(μ2‐S)23‐S)Cu(μ2‐SCN)(CuMeCN)]2, which has two butterfly‐shaped [Tp*WS3Cu2] cores bridged across a centre of inversion by two (CuSCN) anions. The S atoms of the bridging thiocyanate ligands interact with the H atoms of the methyl groups of the Tp* units of a neighbouring dimer to form a C—H...S hydrogen‐bonded chain. The N atoms of the thiocyanate anions interact with the H atoms of the methyl groups of the Tp* units of neighbouring chains, affording a two‐dimensional hydrogen‐bonded network.  相似文献   

16.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

17.
The syntheses, structures, and chemotherapeutic activities of Ag(I)‐, Au(I)‐, and Ru(II)‐complexes ligated to a novel N‐heterocyclic carbene ligand, 2‐(4‐nitrophenyl)imidazo[1,5‐a]pyridin‐2‐ylidene ( 1 ), are described. The corresponding complexes, [Ag( 1 )2][PF6], [Au( 1 )2][PF6] ( 3 ), and [Ru( 1 )(p‐cymene)Cl][PF6] ( 4 ), were prepared using convenient transmetallation chemistry and characterized using a range of spectroscopic and analytical techniques. X‐ray crystallography revealed that complexes 2 and 3 adopted linear structures whereas 4 exhibited a prototypical “piano‐stool”‐like geometry; the structural assignments were further supported by DFT calculations. A series of in vitro studies revealed that while the aforementioned Ag(I), Au(I) and Ru(II) complexes exhibited significant cytotoxicities against the human colon adenocarcinoma (HCT 116), lung cancer (A549), and breast cancer (MCF7) cell lines, the Ru derivative was most prominent.  相似文献   

18.
We report here a “nonspectator” behavior for an unsupported L ‐function σ3‐P ligand (i.e. P{N[o‐NMe‐C6H4]2}, 1a ) in complex with the cyclopentadienyliron dicarbonyl cation (Fp+). Treatment of 1a ?Fp+ with [(Me2N)3S][Me3SiF2] results in fluoride addition to the P‐center, giving the isolable crystalline fluorometallophosphorane 1aF ?Fp that allows a crystallographic assessment of the variance in the Fe?P bond as a function of P‐coordination number. The nonspectator reactivity of 1a ?Fp+ is rationalized on the basis of electronic structure arguments and by comparison to trigonal analogue (Me2N)3P?Fp+ (i.e. 1b ?Fp+), which is inert to fluoride addition. These observations establish a nonspectator L/X‐switching in (σ3‐P)–M complexes by reversible access to higher‐coordinate phosphorus ligand fragments.  相似文献   

19.
“Three‐arm star” poly[11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate]s were synthesized by atom transfer radical polymerization (ATRP) of 11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate using two new trifunctional initiators: 1,3,5‐tri‐ (methyl 2‐bromopropionate)benzene and 2,4,6‐tri[4′‐methyl(2′′‐bromopropionate)phenoxymethyl]mesitylene. The polymers synthesized with 1,3,5‐tri(methyl 2‐bromopropionate)benzene (series II) contained 14–127 repeat units according to gel permeation chromatography relative to linear polystyrene (GPCPSt) and 13–271 repeat units according to GPC with a light scattering detector (GPCLS). Those synthesized with 2,4,6‐tri[4′‐methyl(2′′‐bromopropionate)phenoxymethyl]mesitylene (series III) contained 14–87 repeat units according to GPCPSt and 10–120 repeat units according to GPCLS. The absolute molecular weight, size, and shape of both series of polymers were characterized by light scattering in CH2Cl2, and their thermotropic behavior was analyzed using differential scanning calorimetry; both types of properties were compared to those of the other architectures, especially the corresponding three‐arm star poly[11‐(4′‐cyanophenyl‐4′′‐phenoxy)undecyl acrylate]s synthesized previously using 1,3,5‐trisbromomethylmesitylene as the initiator. The size and shape of the three‐arm star polymers in CH2Cl2 are similar, although the isotropization temperature in the solid state decreases and the breadth of the isotropization transition increases with increasing size and flexibility of the trifunctional core. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4363–4382, 2008  相似文献   

20.
A novel method for preparation the comb‐like copolymers with amphihilic poly(ethylene oxide)‐block‐poly(styrene) (PEO‐b‐PS) graft chains by “graft from” and “graft onto” strategies were reported. The ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using α‐methoxyl‐ω‐hydroxyl‐poly(ethylene oxide) (mPEO) and diphenylmethyl potassium (DPMK) as coinitiation system, then the EEGE units on resulting linear copolymer mPEO‐b‐Poly(EO‐co‐EEGE) were hydrolyzed and the recovered hydroxyl groups were reacted with 2‐bromoisobutyryl bromide. The obtained macroinitiator mPEO‐b‐Poly(EO‐co‐BiBGE) can initiate the polymerization of styrene by ATRP via the “Graft from” strategy, and the comb‐like copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] were obtained. Afterwards, the TEMPO‐PEO was prepared by ring‐opening polymerization (ROP) of EO initiated by 4‐hydroxyl‐2,2,6,6‐tetramethyl piperdinyl‐oxy (HTEMPO) and DPMK, and then coupled with mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] by atom transfer nitroxide radical coupling reaction in the presence of cuprous bromide (CuBr)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) via “Graft onto” method. The comb‐like block copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐(PS‐b‐PEO)] were obtained with high efficiency (≥90%). The final product and intermediates were characterized in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1930–1938, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号