首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of homoditopic ligands H2LCX (X=4–6) has been designed to self‐assemble with lanthanide ions (LnIII), resulting in neutral bimetallic helicates of overall composition [Ln2(LCX)3] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log β23 in the range 26–28 at pH 7.4) and display a metal‐ion environment with pseudo‐D3 symmetry and devoid of coordinated water molecules. The emission of EuIII, TbIII, and YbIII is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu2(LC5)3] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 μm of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co‐localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (λexc=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven EuIII and TbIII bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap ΔE(3ππ*–5DJ) and the sensitisation efficiency of the ligands.  相似文献   

2.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

3.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

4.
Three new homodinuclear lanthanide(III) complexes [Ln2(L)6(2,2′‐bipy)2] [Ln = TbIII ( 1 ), SmIII ( 2 ), EuIII ( 3 ); HL = 3‐hydroxycinnamic acid (3‐HCA); 2,2′‐bipy = 2,2′‐bipyridine] were synthesized and characterized by IR spectroscopy, elemental analyses, and X‐ray diffraction techniques. Complexes 1 – 3 crystallize in triclinic system, space group P$\bar{1}$ . In all complexes the lanthanide ions are nine‐coordinate by two nitrogen atoms from the 2,2′‐bipy ligand and seven oxygen atoms from one chelating L ligands and four bridging L ligands, forming distorted tricapped trigonal prismatic arrangements. The lanthanide(III) ions are intramolecularly bridged by eight carboxylate oxygen atoms forming dimeric complexes with Ln ··· Ln distances of 3.92747(15), 3.9664(6), and 3.9415(4) Å for complexes 1 – 3 , respectively. The luminescent properties in the solid state of HL ligand and EuIII complex are also discussed.  相似文献   

5.
The lanthanide complex [Eu3(8‐HQCA)3(COOH)(OH)2(H2O)3]n · nH2O (8‐HQCA = 8‐hydroxyquinoline‐7‐carboxylic acid) was synthesized and characterized. Single‐crystal X‐ray diffraction shows that the trinuclear structures are linked by ligands to form 2D layers. The results of DFT calculation shows that energy can be transferred effectively from the ligand to EuIII ions. A series of heteronuclear complexes {[(Eu1–xYx)3(8‐HQCA)3(COOH) (OH)2(H2O)3]n · nH2O (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)} were synthesized and their luminescent properties were studied. The results showed that the doping of YIII ions could change the fluorescent intensity of the EuIII complex, but could not change their positions.  相似文献   

6.
Two chelate ligands for europium(III) having minocycline (=(4S,4aS,5aR,12aS)‐4,7‐bis(dimethylamino)‐1,4,4a,5,5a,6,11,12a‐octahydro‐3,10,12,12a‐tetrahydroxy‐1,11‐dioxonaphthacene‐2‐carboxamide; 5 ) as a VIS‐light‐absorbing group were synthesized as possible VIS‐light‐excitable stable Eu3+ complexes for protein labeling. The 9‐amino derivative 7 of minocycline was treated with H6TTHA (=triethylenetetraminehexaacetic acid=3,6,9,12‐tetrakis(carboxymethyl)‐3,6,9,12‐tetraazatetradecanedioic acid) or H5DTPA (=diethylenetriaminepentaacetic acid=N,N‐bis{2‐[bis(carboxymethyl)amino]ethyl}glycine) to link the polycarboxylic acids to minocycline. One of the Eu3+ chelates, [Eu3+(minocycline‐TTHA)] ( 13 ), is moderately luminescent in H2O by excitation at 395 nm, whereas [Eu3+(minocycline‐DTPA)] ( 9 ) was not luminescent by excitation at the same wavelength. The luminescence and the excitation spectra of [Eu3+(minocycline‐TTHA)] ( 13 ) showed that, different from other luminescent EuIII chelate complexes, the emission at 615 nm is caused via direct excitation of the Eu3+ ion, and the chelate ligand is not involved in the excitation of Eu3+. However, the ligand seems to act for the prevention of quenching of the Eu3+ emission by H2O. The fact that the excitation spectrum of [Eu3+(minocycline‐TTHA)] is almost identical with the absorption spectrum of Eu3+ aqua ion supports such an excitation mechanism. The high stability of the complexes of [Eu3+(minocycline‐DTPA)] ( 9 ) and [Eu3+(minocycline‐TTHA)] ( 13 ) was confirmed by UV‐absorption semi‐quantitative titrations of H4(minocycline‐DTPA) ( 8 ) and H5(minocycline‐TTHA) ( 12 ) with Eu3+. The titrations suggested also that an 1 : 1 ligand Eu3+ complex is formed from 12 , whereas an 1 : 2 complex was formed from 8 minocycline‐DTPA. The H5(minocycline‐TTHA) ( 12 ) was successfully conjugated to streptavidin (SA) (Scheme 5), and thus the applicability of the corresponding Eu3+ complex to label a protein was established.  相似文献   

7.
《化学:亚洲杂志》2017,12(7):768-774
Bridged polysilsesquioxanes (BPs) show great potential in the development of lanthanide‐based luminescent materials, owing to their capacity to loading lanthanide complexes with high concentration and their flexible processability. A novel BP precursor, consisting of a C 3‐symmetrical benzene central core moiety, capable of sensitizing the luminescence of Eu3+ and Tb3+ is reported. Tunable, full‐color luminescent gels were facilely prepared by mixing the as‐synthesized precursor and Ln3+ ions in appropriate solvents. By either changing the Eu3+/Tb3+ molar ratio or altering the excitation wavelength, the emission colors of the final gels can be finely tuned. Additionally, the yellow‐colored emissive gel with a molar ratio of Eu3+ to Tb3+ of 0.5 can be used as an effective ratiometric luminescent sensor for distinguishing amines with lower pK a (<5) from those with higher pK a (>9).  相似文献   

8.
We describe herein the synthesis and photophysical characterization of new lanthanide complexes that consist of a (9,9‐dimethylfluoren‐2‐yl)‐2‐oxoethyl or a (9,9′‐spirobifluoren‐2‐yl)‐2‐oxoethyl unit as the antenna, covalently linked to a 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) unit as the Ln3+ (Gd3+, Eu3+, Sm3+, Tb3+, Dy3+) coordination site. We were able to translate the spectroscopic properties of the innovative bipartite ligands into the formation of highly luminescent europium complexes that exhibit efficient emission (?se>0.1) upon sensitization in the near‐visible region, that is, with an excitation wavelength above 350 nm. The luminescence of the Eu3+complexes is clearly detectable at concentrations as low as 10 pM . Furthermore, the structural organization of these bipartite ligands makes the complexes highly soluble in aqueous solutions and chemically stable over time.  相似文献   

9.
The synthesis of the C2‐symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine‐2,6‐dicarboxamide moieties linked by a xylene spacer and the formation of LnIII‐based (Ln=Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2? 1 3] in MeCN by means of a metal‐directed synthesis is described. By analyzing the metal‐induced changes in the absorption and the fluorescence of 1 , the formation of the helicates, and the presence of a second species [Ln2? 1 2] was confirmed by nonlinear‐regression analysis. While significant changes were observed in the photophysical properties of 1 , the most dramatic changes were observed in the metal‐centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [Lu2? 1 3], was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2? 1 3], [Eu2? 1 3], and [Tb2? 1 3].  相似文献   

10.
Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on EuIII and TbIII complexes as visible emitters and NdIII, ErIII, and YbIII complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X‐ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X‐ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5Eu0.5(pfb)3(H2O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)?→Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved.  相似文献   

11.
Time‐resolved luminescence measurements of luminescent lanthanide complexes have advantages in biological assays and high‐throughput screening, owing to their high sensitivity. In spite of the recent advances in their energy‐transfer mechanism and molecular‐orbital‐based computational molecular design, it is still difficult to estimate the quantum yields of new luminescent lanthanide complexes. Herein, solid‐phase libraries of luminescent lanthanide complexes were prepared through amide‐condensation and Pd‐catalyzed coupling reactions and their luminescent properties were screened with a microplate reader. Good correlation was observed between the time‐resolved luminescence intensities of the solid‐phase libraries and those of the corresponding complexes that were synthesized by using liquid‐phase chemistry. This method enabled the rapid and efficient development of new sensitizers for SmIII, EuIII, and TbIII luminescence. Thus, solid‐phase combinatorial synthesis combined with on‐resin screening led to the discovery of a wide variety of luminescent sensitizers.  相似文献   

12.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5‐bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish‐orange PL) in TbIII/EuIII‐mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

13.
Herein we report the synthesis of propanoic acid functionalized ionic liquids (ILs) with various lengths of alkyl chain on the imidazole ring. The synthesized propanoic acid functionalized ILs were used to dissolve Eu2O3 (or Tb4O7) due to the formation of europium(III) (or terbium(III)) carboxylate, aimed to get soft luminescent materials combining the properties of ILs and attractive luminescent properties of lanthanide ions. The luminescent behavior of Eu3+ and Tb3+ in the ILs were investigated by luminescence spectroscopy. The affect of the alkyl chain on the luminescent behavior (the asymmetry parameter (R), the lifetime of 5D0, and the 5D0 quantum efficiency) of Eu3+ has been discussed.  相似文献   

14.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

15.
Three new isostructural 3D lanthanide metal–organic frameworks (Ln‐MOFs), {H[LnL(H2O)]?2 H2O}n ( 1‐Ln ) (Ln=Eu3+, Gd3+ and Tb3+), based on infinite lanthanide‐carboxylate chains were constructed by employing an ether‐separated 5,5′‐oxydiisophthalic acid (H4L) ligand under solvothermal reaction. 1‐Eu and 1‐Tb exhibit strong red and green emission, respectively, through the antenna effect, as demonstrated through a combination of calculation and experimental results. Moreover, a series of dichromatic doped 1‐EuxTby MOFs were fabricated by introducing different concentrations of Eu3+ and Tb3+ ions, and they display an unusual variation of luminescent colors from green, yellow, orange to red. 1‐Eu with channels decorated by ether O atoms and the open metal sites displays good performance for CO2 capture and conversion between CO2 and epoxides into cyclic carbonates.  相似文献   

16.
The effect of laser irradiation at λexc 266 nm onto the fluorescence characteristics of EuIII in solution of the ionic liquid 1‐methyl‐3‐butyl‐1H‐imidazolium bis[(trifluoromethyl)sulfonyl]amide (C4‐mimTf2N) was examined for various amounts of H2O added. Stable radiolytic products that were generated at very low doses (in the range of 4 kGy) were very reactive with EuIII and led to the appearance of a new europium luminescent species that was characterized by lifetime, relative intensity, and emission spectrum. Although the lifetime and the intensity depended on the H2O content, the emission spectrum was not influenced by H2O. It was shown that large amounts of H2O, although not preventing radiolysis of C4‐mimTf2N, inhibited the complexation with EuIII.  相似文献   

17.
The tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide ( L ) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln2(hfac)5(O2CPhCl)( L )3] ? 2 H2O (hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion, O2CPhCl?=3‐chlorobenzoate anion) and mononuclear [Ln(hfac)3( L )2] complexes were obtained by using rare‐earth ions with either large (LnIII=Pr, Gd) or small (LnIII=Y, Yb) ionic radius, respectively, whereas the use of TbIII that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb2(hfac)4(O2CPhCl)2( L )2]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid‐state absorption spectroscopy, whereas time‐dependent density functional theory (TD‐DFT) calculations have been carried out on the diamagnetic YIII derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)3( L )2] complex, the excitation at 19 600 cm?1 of the HOMO→LUMO+1/LUMO+2 charge‐transfer transition induces both line‐shape emissions in the near‐IR spectral range assigned to the 2F5/22F7/2 (9860 cm?1) ytterbium‐centered transition and a residual charge‐transfer emission around 13 150 cm?1. An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide chromophore is evidence of the YbIII sensitization.  相似文献   

18.
Six two‐dimensional (2D) coordination polymers (CPs), namely, poly[{μ5‐3,3‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ6O1:O1′:O3,O3′:O5:O5′}bis(N,N‐dimethylformamide‐κO)lanthanide(III)], [Ln(C21H11O8)(C3H7NO)2]n, with lanthanide/Ln = cerium/Ce for CP1 , praseodymium/Pr for CP2 , neodymium/Nd for CP3 , samarium/Sm for CP4 , europium/Eu for CP5 and gadolinium/Gd for CP6 , have been prepared by solvothermal methods using the ligand 3,3′‐[(5‐carboxy‐1,3‐phenylene)bis(oxy)]dibenzoic acid (H3cpboda) in the presence of Ln(NO3)3. The complexes were characterized by single‐crystal X‐ray and powder diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis (TGA). All the structures of this family of lanthanide CPs are isomorphous with the triclinic space group P and reveal that they have the same 2D network based on binuclear LnIII units, which are further extended via interlayer C—H…π interactions into a three‐dimensional supramolecular structure. The carboxylate groups of the cpboda3? ligands link adjacent LnIII ions and form binuclear [Ln2(RCOO)4] secondary building units (SBUs), in which each binuclear LnIII SBU contains four carboxylate groups from different cpboda3? ligands. Moreover, with the increase of the rare‐earth Ln atomic radius, the dihedral angles between the aromatic rings gradually increase. Magnetically, CP6 shows weak antiferromagnetic coupling between the GdIII ions. The solid‐state luminescence properties of CP2 , CP5 and CP6 were examined at ambient temperature and CP5 exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.53, 0.31), with luminescence quantum yields of 22%. Therefore, CP5 should be regarded as a potential optical material.  相似文献   

19.
In this study, we present the aqueous solution behavior of two luminescent lanthanide antenna complexes (Eu3+? 1 , Dy3+? 9 ) with different ligand topologies in the presence of dipicolinic acid (DPA, pyridine‐2,6‐dicarboxylic acid). Macrocyclic (1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid, DO3A, 9 ) and acyclic (1,4,7‐triazaheptane‐1,1,7,7‐tetraacetic acid, DTTA, 1 ) ligands have been selected to form a ratiometric pair in which Dy3+? 9 acts as a reference and Eu3+? 1 acts as a probe for the recognition of DPA. The pair of luminescent complexes in water reveals the capability to work as a DPA luminescent sensor. The change of emission intensity of Eu3+ indicates the occurrence of a new sensitization path for the lanthanide cation through excitation of DPA. NMR evidence implies the presence of free 1 and mass spectrometry shows the formation of emitting [EuDPA2]? as a result of a ligand exchange reaction.  相似文献   

20.
A series of seven new tetrazole‐based ligands (L1, L3–L8) containing terpyridine or bipyridine chromophores suited to the formation of luminescent complexes of lanthanides have been synthesized. All ligands were prepared from the respective carbonitriles by thermal cycloaddition of sodium azide. The crystal structures of the homoleptic terpyridine–tetrazolate complexes [Ln(Li)2]NHEt3 (Ln=Nd, Eu, Tb for i=1, 2; Ln=Eu for i=3, 4) and of the monoaquo bypyridine–tetrazolate complex [Eu(H2O)(L7)2]NHEt3 were determined. The tetradentate bipyridine–tetrazolate ligand forms nonhelical complexes that can contain a water molecule coordinated to the metal. Conversely, the pentadentate terpyridine–tetrazolate ligands wrap around the metal, thereby preventing solvent coordination and forming chiral double‐helical complexes similarly to the analogue terpyridine–carboxylate. Proton NMR spectroscopy studies show that the solid‐state structures of these complexes are retained in solution and indicate the kinetic stability of the hydrophobic complexes of terpyridine–tetrazolates. UV spectroscopy results suggest that terpyridine–tetrazolate complexes have a similar stability to their carboxylate analogues, which is sufficient for their isolation in aerobic conditions. The replacement of the carboxylate group with tetrazolate extends the absorption window of the corresponding terpyridine‐ (≈20 nm) and bipyridine‐based (25 nm) complexes towards the visible region (up to 440 nm). Moreover, the substitution of the terpyridine–tetrazolate system with different groups in the ligand series L3–L6 has a very important effect on both absorption spectra and luminescence efficiency of their lanthanide complexes. The tetrazole‐based ligands L1 and L3–L8 sensitize efficiently the luminescent emission of lanthanide ions in the visible and near‐IR regions with quantum yields ranging from 5 to 53 % for EuIII complexes, 6 to 35 % for TbIII complexes, and 0.1 to 0.3 % for NdIII complexes, which is among the highest reported for a neodymium complex. The luminescence efficiency could be related to the energy of the ligand triplet states, which are strongly correlated to the ligand structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号