首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Four novel onium salts (onium‐polyoxometalate) have been synthesized and characterized. They contain a diphenyliodonium or a thianthrenium (TH) moiety and a polyoxomolybdate or a polyoxotungstate as new counter anions. Outstandingly, these counter anions are photochemically active and can sensitize the decomposition of the iodonium or TH moiety through an intramolecular electron transfer. The phenyl radicals generated upon UV light irradiation (Xe–Hg lamp) are very efficient to initiate the radical polymerization of acrylates. Cations are also generated for the cationic polymerization of epoxides. Remarkably, these novel iodonium and TH salts are characterized by a higher reactivity compared with that of the diphenyliodonium hexafluorophosphate and the commercial TH salt, respectively. Interpenetrating polymer networks can also be obtained under air through a concomitant cationic/radical photopolymerization of an epoxy/acrylate blend (monomer conversions > 65%). The photochemical mechanisms are studied by steady‐state photolysis, cyclic voltammetry, and electron spin resonance techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 981–989  相似文献   

2.
Bicarbonyl‐substituted sulfur ylide is a useful, but inert reagent in organic synthesis. Usually, harsh reaction conditions are required for its transformation. For the first time, it was demonstrated that a new, visible‐light photoredox catalytic annulation of sulfur ylides under extremely mild conditions, permits the synthesis of oxindole derivatives in high selectivities and efficiencies. The key to its success is the photocatalytic single‐electron‐transfer (SET) oxidation of the inert amide and acyl‐stabilized sulfur ylides to reactive radical cations, which easily proceeds with intramolecular C?H functionalization to give the final products.  相似文献   

3.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

4.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
《Electroanalysis》2003,15(4):243-248
The electrochemical oxidation of dimethyl‐p‐phenylenediamine (DMPD) in aqueous solution (pH 7 phosphate buffer) has been studied under conventional hydrodynamic and microelectrode voltammetric conditions and found to undergo a two‐electron electrochemically reversible oxidation. Upon the application of ultrasound to the system an observed shoulder emerges in the oxidation wave. This effect has been attributed to the resolution of the two‐electron transfer processes occurring: the first a relatively fast electron transfer (0.1 cm s?1) followed by a second slower (10?3 cm s?1) electron transfer: under the very high mass transport rates induced by insonation an overpotential develops for the second electron transfer so leading to the observed voltammetric resolution. The range of mass transport conditions accessible via sonication allows the estimation of the two rate constants reported.  相似文献   

6.
The use of pyridinium‐activated primary amines as photoactive functional groups for deaminative generation of alkyl radicals under catalyst‐free conditions is described. By taking advantage of the visible light absorptivity of electron donor–acceptor complexes between Katritzky pyridinium salts and either Hantzsch ester or Et3N, photoinduced single‐electron transfer could be initiated in the absence of a photocatalyst. This general reactivity platform has been applied to deaminative alkylation (Giese), allylation, vinylation, alkynylation, thioetherification, and hydrodeamination reactions. The mild conditions are amenable to a diverse range of primary and secondary alkyl pyridiniums and demonstrate broad functional group tolerance.  相似文献   

7.
Kinetics of the reactions of 3,5‐dinitrothiophene 1 and 3‐cyano‐5‐nitrothiophene 2 with a series of parasubstituted phenoxide anions 3a–c have been investigated in aqueous solution at 20°C. Two unsubstituted electrophilic centers (C(2) and C(4)) of the two thiophenes have been identified. The Fukui functions correctly predict the C(2) and C(4) atoms as the most electrophilic centers of these electron‐deficient thiophenes 1 and 2 . Analysis of the experimental data in terms of Brønsted relationships reveals that the reaction mechanism likely involves a single‐electron transfer (SET) process. The excellent correlations upon plotting the rate constants versus the oxidation potentials Eo values is an additional evidence that reactions between thiophenes and phenoxide anions are proceeding through an initial electron transfer. It is of particular interest to note that the systems studied in this paper provide a rare example of a SET mechanism in σ‐complexation reactions. According to the free energy relationship log k = s(N + E) (Angew. Chem., Int. Ed. Engl., 1994, 33, 938–957), the electrophilicity parameters E of the C‐4 and C‐2 positions of the thiophenes have been determined and compared with the reactivities of other ambident electrophiles. On the other hand, the second‐order rate constants for the reactions of these thiophenes with the hydroxide ion has been measured in water and 50% water–50% acetonitrile and found to agree with those calculated theoretically using Mayr's equation from the E values determined in this work and from the previously published N and s parameters of OH.  相似文献   

8.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   

9.
The synthesis and physical characterization of a new class of N‐heterocycle–boryl radicals is presented, based on five membered ring ligands with a N(sp2) complexation site. These pyrazole–boranes and pyrazaboles exhibit a low bond dissociation energy (BDE; B?H) and accordingly excellent hydrogen transfer properties. Most importantly, a high modulation of the BDE(B?H) by the fine tuning of the N‐heterocyclic ligand was obtained in this series and could be correlated with the spin density on the boron atom of the corresponding radical. The reactivity of the latter for small molecule chemistry has been studied through the determination of several reaction rate constants corresponding to addition to alkenes and alkynes, addition to O2, oxidation by iodonium salts and halogen abstraction from alkyl halides. Two selected applications of N‐heterocycle–boryl radicals are also proposed herein, for radical polymerization and for radical dehalogenation reactions.  相似文献   

10.
Poly(vinylidene fluoride‐co‐trifluoroethylene‐co‐chlorotrifluoroethylene) (P(VDF‐co‐TrFE‐co‐CTFE)) with internal double bond has been reported with high dielectric constant and energy density at room temperature, which is expected to serve as a promising dielectric film in high pulse discharge capacitors. An environmentally friendly one‐pot route, including the controllable hydrogenation via Cu(0) mediated single electron transfer radical chain transfer reaction (SET‐CTR) and dehydrochlorination catalyzed with N‐containing reagent, is successfully developed to synthesize P(VDF‐co‐TrFE‐co‐CTFE) containing unsaturation. The resultant polymer was carefully characterized with 1H NMR, 19F NMR, and FTIR. The composition of the resultant copolymer is strongly influenced by reaction conditions, including the reaction temperature, catalyst concentration, the types of ligands and solvents. The kinetics data of the chain transfer and elimination reaction demonstrate their well‐controlled feature of the strategy. By shifting the equilibrium between the CTR and elimination reactions dominated by N‐compounds serving as ligands in SET‐CTR and catalyst in the dehydrochlorination of P(VDF‐co‐CTFE), P(VDF‐co‐TrFE‐co‐CTFE) with tunable TrFE and double‐bond content could be synthesized in this one‐pot route. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3429–3440  相似文献   

11.
Single‐electron transfer living radical polymerization (SET‐LRP) proceeds by an outer‐sphere single‐electron transfer mechanism that induces a heterolytic bond cleavage of the initiating and propagating R‐X (where X = Cl, Br, and I) species. Therefore, unlike the homolytic bond cleavage mechanism claimed for ATRP, SET‐LRP is expected to show a small dependence of the nature of the halide group on the apparent rate constant of activation. This means the R‐X with X = Cl, Br, and I must all be efficient initiators for SET‐LRP and no chain transfer must be observed in the case of initiators with X = Br and I. Here, we report the SET‐LRP of methyl acrylate initiated with the alkyl chlorides methyl‐2‐chloropropionate (MCP) and chloroform (CHCl3) and catalyzed by Cu(0)/Me6‐TREN/CuCl2 in DMSO at 25 °C. A combination of kinetic and structural analysis was used to elucidate the MCP and CHCl3 initiating behavior under SET‐LRP conditions, and to demonstrate the very small dependence of the SET‐LRP apparent rate constant of propagation on X while providing polymers with well defined architecture. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4917–4926, 2008  相似文献   

12.
The reaction of alkynyldifluoroboranes RC≡CBF2 (R = (CH3)3C, CF3, (CF3)2CF) with organyliodine difluoride R′IF2 bearing electron‐withdrawing polyfluoroorganyl groups R′ = C6F5, (CF3)2CFCF=CF, C4F9, and CF3CH2 leads to the corresponding alkynyl(organyl)iodonium salts [(RC≡C)(R′)I][BF4]. This approach uses a widely applicable method as demonstrated for a representative series of polyfluorinated aryl‐, alkenyl‐, and alkyliodine difluorides. Generally, these syntheses proceed with good yields and deliver pure iodonium salts. The distinct electrophilic nature of their [(RC≡C)(R′)I]+ cations is deduced from multinuclear magnetic resonance data. Within the series of new iodonium salts [CF3C≡C(C4F9)I][BF4] is an intrinsic unstable one and decomposed forming CF3C≡CI and C4F10.  相似文献   

13.
The single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate initiated with bromoform (CHBr3) and iodoform (CHI3) and catalyzed by Cu(0)/Me6‐TREN in DMSO at 25 °C provides a reliable method to prepare poly (methyl acrylate) (PMA) with active chain ends and controlled structure that can undergo subsequent functionalization to provide strategies for the synthesis of different block copolymers and other complex architectures. A detailed kinetic and structural analysis was used to assess the scope and the limitations of CHBr3 and CHI3 as initiators under SET‐LRP conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 278–288, 2008  相似文献   

14.
Cu(0)‐mediated living radical polymerization was first extended to acrylonitrile (AN) to synthesize polyacrylonitrile with a high molecular weight and a low polydispersity index. This was achieved by using Cu(0)/hexamethylated tris(2‐aminoethyl)amine (Me6‐TREN) as the catalyst, 2‐bromopropionitrile as the initiator, and dimethyl sulfoxide (DMSO) as the solvent. The reaction was performed under mild reaction conditions at ambient temperature and thus biradical termination reaction was low. The rapid and extensive disproportionation of Cu(I)Br/Me6‐TREN in DMSO/AN supports a mechanism consistent with a single electron transfer‐living radical polymerization (SET‐LRP) rather than activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). 1H NMR analysis and chain extension experiment confirm the high chain‐end functionality of the resultant polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
We report an Umpolung strategy of enol ethers to generate oxy‐allyl cation equivalents based on the use of hypervalent iodine reagents. Under mild basic conditions, the addition of nucleophiles to aryloxy‐substituted vinylbenziodoxolone (VBX) reagents, easily available in two steps from silyl alkynes, resulted in the stereoselective formation of substituted aryl enol ethers. The reaction was most efficient with phenols as nucleophiles, but preliminary results were also achieved for C‐ and N‐ nucleophiles. In absence of external nucleophiles, the 2‐iodobenzoate group of the reagent was transferred. The obtained aryl enol ethers could then be transformed into α‐difunctionalized ketones by oxidation. The described “allyl cation”‐like reactivity contrast with the well‐established “vinyl‐cation” behavior of alkenyl iodonium salts.  相似文献   

16.
Preparation of functional fluoromaterials through chemical modification of traditional fluoropolymers has been recognized as an economic and convenient strategy to expand the application areas of fluoropolymers. Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐grafted‐polyacrylonitrile (P(VDF‐co‐CTFE)‐g‐PAN) has been successfully synthesized via single electron transfer–living radical polymerization (SET–LRP) process initiated with macroinitiator P(VDF‐co‐CTFE) in the presence of trace amount of Cu(0)/tris(2(dimethylamino)ethyl)amine (Me6‐TREN) in dimethyl sulfoxide (DMSO) at ambient temperature. The typical side reactions happened on P(VDF‐co‐CTFE) induced by the nitrogen‐containing solvents and high reaction temperature in atom transfer radical polymerization process could be avoided in SET–LRP process by using the mild reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including the different reaction temperature, catalyst concentration, as well as monomer amount in feed. An induction period of 0.5–1.0 h in the polymerization procedure was observed at low temperature, which may be attributed to the Cu2O from the surface of the Cu(0) powder. When Cu(0) catalyst is activated, the introduction period is eliminated. The polymerization rates were decelerated by adding excessive Me6‐TREN for the formation of more stable CuCl2/(Me6‐TREN)2. The structure of P(VDF‐co‐CTFE)‐g‐PAN was demonstrated by FTIR, NMR, DSC, and TGA. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Computational studies on the heterolytic bond dissociation energies and electron affinities of methyl 2‐bromopropionate (MBP) and ethyl 2‐bromoisobutyrate (EBiB) in the dissociative electron transfer (DET) step of single electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA) combined with kinetic experiments were performed in an effort to design the most efficient initiation system. This study suggests that EBiB is more effective than MBP in the SET‐LRP of acrylates catalyzed by Cu(0) wire, thus being a true electronic mimic of the dormant PMA species. EBiB allows for a more predictable dependence of the molecular weight evolution and distribution. This is exemplified by the absence of a deviation in the PMA molecular weight from theoretical values at low conversions, as a result of a faster SET activation with EBiB than with MBP. The enhanced control over molecular weight evolution was also observed in the SET‐LRP of MA initiated with bifunctional initiators similar in structure to MBP and EBiB, suggesting a higher reactivity than MBP in the SET activation, which matches closely that of the polymer dormant chains. The use of bifunctional initiators in conjunction with activated Cu(0) wire in SET‐LRP allows for dramatically accelerated polymerizations, although still providing for exceptional control of the molecular weight evolution and distribution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Complexes of the ubiquitous β‐diketiminates (NacNac) ligands have been reported with most elements of the periodic table, including Group 14 Si, Ge, Sn, and Pb. The striking absence of carbon representatives has been attributed to the extreme electrophilicity of the putative C‐NacNac adducts. An electron enriched 2,4‐(dimethylamino)diketiminato backbone is described, which allowed for the synthesis and isolation of such stable pyrimidin‐1,3‐diium and pyrimidinium‐2‐ylidene salts. Structural and preliminary reactivity studies are reported, including an air‐stable gold complex. An unforeseen original class of stable N‐heterocyclic carbenes and, more generally, the potential of electron‐rich NacNac patterns for taming highly electrophilic centers are showcased.  相似文献   

19.
A photoredox catalytic ensemble consisting of CuO‐Fe2O3 nanocomposites and oligomeric derivative of phenazine has been developed. The prepared system acts as an efficient photoredox catalyst for C?N bond formation reaction via SET mechanism under ‘green’ conditions (aerial environment, mixed aqueous media, recyclable), requiring less equivalents of base and amine substrate. The present study demonstrates the significant role of supramolecular assemblies as photooxidants and reductants upon irradiation and their important contribution towards the activation of the metallic centre through energy transfer and electron transfer pathways. The potential of oligomer 4 : CuO‐Fe2O3 has also been explored for C?C bond formation reactions via the Sonogashira protocol.  相似文献   

20.
The effect of initial ligand concentration on the apparent rate constant of propagation of single‐electron transfer living radical polymerization (SET‐LRP) of MA in DMSO at 25 °C was examined using various lengths of Cu(0) wire as catalyst. It was determined that unlike other parameters such as initiator concentration, solvent concentration, and deactivator concentration, no simple external rate‐order for the ligand concentration could be determined. Rather, the response of the rate of SET‐LRP to initial ligand concentration is complex and is likely determined by a competition of ligand‐dependent extent of disproportionation as well as the role of ligand concentration in the surface mediated activation process. Results suggest that a minimum concentration of ligand is needed to achieve both acceptable reaction rate and reaction control, and therefore, ligand concentration must be considered in designing experimental conditions for SET‐LRP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5629–5638, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号