首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Well‐defined poly(L ‐lactide)‐b‐poly(ethylene oxide) (PLLA‐b‐PEO) copolymers with different branch arms were synthesized via the controlled ring‐opening polymerization of L ‐lactide followed by a coupling reaction with carboxyl‐terminated poly(ethylene oxide) (PEO); these copolymers included both star‐shaped copolymers having four arms (4sPLLA‐b‐PEO) and six arms (6sPLLA‐b‐PEO) and linear analogues having one arm (LPLLA‐b‐PEO) and two arms (2LPLLA‐b‐PEO). The maximal melting point, cold‐crystallization temperature, and degree of crystallinity (Xc) of the poly(L ‐lactide) (PLLA) block within PLLA‐b‐PEO decreased as the branch arm number increased, whereas Xc of the PEO block within the copolymers inversely increased. This was mainly attributed to the relatively decreasing arm length ratio of PLLA to PEO, which resulted in various PLLA crystallization effects restricting the PEO block. These results indicated that both the PLLA and PEO blocks within the block copolymers mutually influenced each other, and the crystallization of both the PLLA and PEO blocks within the PLLA‐b‐PEO copolymers could be adjusted through both the branch arm number and the arm length of each block. Moreover, the spherulitic growth rate (G) decreased as the branch arm number increased: G6sPLLA‐b‐PEO < G4sPLLA‐b‐PEO < G2LPLLA‐b‐PEO < GLPLLA‐b‐PEO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2034–2044, 2006  相似文献   

2.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   

3.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A novel method for preparation the comb‐like copolymers with amphihilic poly(ethylene oxide)‐block‐poly(styrene) (PEO‐b‐PS) graft chains by “graft from” and “graft onto” strategies were reported. The ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using α‐methoxyl‐ω‐hydroxyl‐poly(ethylene oxide) (mPEO) and diphenylmethyl potassium (DPMK) as coinitiation system, then the EEGE units on resulting linear copolymer mPEO‐b‐Poly(EO‐co‐EEGE) were hydrolyzed and the recovered hydroxyl groups were reacted with 2‐bromoisobutyryl bromide. The obtained macroinitiator mPEO‐b‐Poly(EO‐co‐BiBGE) can initiate the polymerization of styrene by ATRP via the “Graft from” strategy, and the comb‐like copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] were obtained. Afterwards, the TEMPO‐PEO was prepared by ring‐opening polymerization (ROP) of EO initiated by 4‐hydroxyl‐2,2,6,6‐tetramethyl piperdinyl‐oxy (HTEMPO) and DPMK, and then coupled with mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐PS] by atom transfer nitroxide radical coupling reaction in the presence of cuprous bromide (CuBr)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) via “Graft onto” method. The comb‐like block copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐(PS‐b‐PEO)] were obtained with high efficiency (≥90%). The final product and intermediates were characterized in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1930–1938, 2009  相似文献   

6.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

7.
Amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were synthesized by ring‐opening polymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and 2,2‐bis(azidomethyl)trimethylene carbonate (ADTC) with poly(ethylene glycol) monomethyl ether (mPEG) as an initiator, followed by the click reaction of propargyl palmitate and the pendant azido groups on the polymer chains. Stable micelle solutions of the amphiphilic block‐graft copolymers could be prepared by adding water to a THF solution of the polymer followed by the removal of the organic solvent by dialysis. Dynamic light scattering measurements showed that the micelles had a narrow size distribution. Transmission electron microscopy images displayed that the micelles were in spherical shape. The grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug‐loading capacity and entrapment efficiency. Further, the amphiphilic block‐graft copolymers mPEG‐b‐P(DTC‐ADTC‐g‐Pal) were low cytotoxic and had more sustained drug release behavior. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Well‐defined poly(tert‐butyl methacrylate)‐graft‐poly (dimethylsiloxane) (PtBuMA‐g‐PDMS) graft copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) copolymerization of methacryloyl‐terminated poly (dimethylsiloxane) (PDMS‐MA) with tert‐butyl methacrylate (tBuMA) in ethyl acetate, using 2,2′‐azobis(isobutyronitrile) (AIBN) as the initiator and 2‐cyanoprop‐2‐yl dithiobenzoate as the RAFT agent. The RAFT statistical copolymerization of PDMS‐MA with tBuMA is shown to be azeotropic and the obtained PtBuMA‐g‐PDMS graft copolymers have homogeneously distributed branches because of the similar reactivity of monomers (rtBuMArPDMSMA ≈ 1). By the RAFT block copolymerization of PDMS‐MA with tBuMA, moreover, narrow molecular weight distribution (Mw/Mn < 1.3) PtBuMA‐g‐PDMS graft copolymers with gradient or blocky branch spacing were synthesized. The graft copolymers exhibit the glass transitions corresponding to the PDMS and PtBuMA phase, respectively. However, the arrangement of monomer units in copolymer chains and the length of PtBuMA moieties have important effects on the thermal behavior of PtBuMA‐g‐PDMS graft copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The graft polymer poly(ethylene oxide)‐g‐poly(?‐caprolactone)2 (PEO‐g‐PCL2) with modulated grafting sites was synthesized by the combination of ring‐opening polymerization (ROP) mechanism, efficient Williamson reaction, with thiol–ene addition reaction. First, the precursor of PEO‐Allyl‐PEO with two terminal hydroxyl groups and one middle allyl group was prepared by ROP of EO monomers. Then, the macroinitiator [PEO‐(OH)2‐PEO]s was synthesized by sequential Williamson reaction between terminal hydroxyl groups and thiol–ene addition reaction on pendant allyl groups. Finally, the graft polymer PEO‐g‐PCL2 was obtained by ROP of ?‐CL monomers using [PEO‐(OH)2‐PEO]s as macroinitiator. The target graft polymer and all intermediates were well characterized by the measurements of gel permeation chromatography, 1H NMR, and thermal gravimetric analysis. The crystallization behavior was investigated by the measurements of differential scanning calorimetry, wide‐angle X‐ray diffraction and polarized optical microscope. The results showed that when the PCL content of side chains reached 59.2%, the crystalline structure had been dominated by PCL part and the crystalline structure formed by PEO part can be almost neglected. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2239–2247  相似文献   

10.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Thermoresponsive and pH‐responsive graft copolymers, poly(L ‐glutamate)‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) and poly(L ‐glutamic acid‐co‐(L ‐glutamate‐g‐oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate))), were synthesized by ring‐opening polymerization (ROP) of N‐carboxyanhydride (NCA) monomers and subsequent atom transfer radical polymerization of 2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate. The thermoresponsiveness of graft copolymers could be tuned by the molecular weight of oligo(2‐(2‐(2‐methoxyethoxy)ethoxy)ethyl methacrylate) (OMEO3MA), composition of poly(L ‐glutamic acid) (PLGA) backbone and pH of the aqueous solution. The α‐helical contents of graft copolymers could be influenced by OMEO3MA length and pH of the aqueous solution. In addition, the graft copolymers exhibited tunable self‐assembly behavior. The hydrodynamic radius (Rh) and critical micellization concentration values of micelles were relevant to the length of OMEO3MA and the composition of biodegradable PLGA backbone. The Rh could also be adjusted by the temperature and pH values. Lastly, in vitro methyl thiazolyl tetrazolium (MTT) assay revealed that the graft copolymers were biocompatible to HeLa cells. Therefore, with good biocompatibility, well‐defined secondary structure, and mono‐, dual‐responsiveness, these graft copolymers are promising stimuli‐responsive materials for biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

14.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

15.
Poly(o‐aminobenzyl alcohol) (POABA) was grafted with poly(ethylene oxide)s (PEOs) through the reaction of tosylated PEO with both the hydroxide and amine moieties of reduced POABA. Reduced POABA was prepared through the acid‐mediated polymerization of o‐aminobenzyl alcohol, followed by neutralization with an aqueous ammonium hydroxide solution and reduction with hydrazine. The grafted copolymers were very soluble in common polar solvents, such as chloroform, tetrahydrofuran, and dimethylformamide, and the copolymers with longer PEO side chains (number‐average molecular weight > 164) were even water‐soluble. The conductivities of the doped grafted copolymers decreased with increasing PEO side‐chain length because of the nonconducting PEO and its torsional effect on the POABA backbone. The conductivity of highly water‐soluble POABA‐g‐PEO‐350 was 0.689 × 10?3 S/cm, that is, in the semiconducting range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4756–4764, 2004  相似文献   

16.
The crystallization and melting behavior of a series of poly(glycerol adipate) (PGA) based graft copolymers with either poly(ε‐caprolactone) (PCL), poly(ethylene oxide) (PEO), or PCL‐b‐PEO diblock copolymer side chains (i.e., PGA‐g‐PCL, PGA‐g‐PEO, and PGA‐g‐(PCL‐b‐PEO)) was studied using polarized light optical microscopy (POM), differential scanning calorimetry (DSC), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD). These results were compared with the behavior of the corresponding linear analogs (PEO, PCL, and PCL‐b‐PEO). POM revealed that spherulitic morphology was retained after grafting. However, spherulite radius as well as radial growth rate was significantly smaller in the graft copolymers. Evaluation of isothermal crystallization kinetics by means of the Avrami theory revealed that the nucleation density was much higher in the graft copolymers. The DSC results indicated that the degree of crystallinity decreased strongly upon grafting while the melting temperatures of PGA‐g‐PCL and PGA‐g‐PEO were found to be close to the values of neat PCL and PEO, respectively. This was attributed to the absence of specific thermodynamic interactions, and, additionally, to lamella thicknesses being similar to those of the homopolymers. The latter point was confirmed by SAXS measurements. In case of PCL‐b‐PEO diblock copolymers and PGA‐g‐(PCL‐b‐PEO) graft copolymers, the crystallization behavior and thus the resulting lamellar morphology is more complex, and a suitable model was developed based on a combination of DSC, WAXD, and SAXS data. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1581–1591  相似文献   

17.
The effects of Br connected groups on atom transfer nitroxide radical coupling (ATNRC) reaction were investigated. Two precursors methoxyl poly(ethylene oxide)‐b‐poly(ethylene oxide‐co‐2‐bromoiso butyryloxy glycidyl ether) (mPEO‐b‐Poly(EO‐co‐BiBGE)) and methoxyl poly(ethylene oxide)‐b‐poly(2‐bromoiso butyryloxy glycidyl ether) (mPEO‐b‐Poly(BiBGE)) with different ? C(CH3)2Br density were designed and synthesized firstly, and then ATNRC reaction were completed between these precursors and 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy poly(ε‐caprolactone) (TEMPO‐PCL) in the presence or absence of St monomers, respectively. The results showed that the structure of Br connected groups showed an important effect on ATNRC reaction, and the ATNRC reaction with high efficiency could be realized by transforming the higher active Br connected groups into the lower one by the addition of small amount of St monomers. The final comb‐like block copolymers mPEO‐b‐[Poly(EO‐co‐Gly)‐g‐(St1.8b‐PCL)] and mPEO‐b‐[Poly(Gly)‐g‐(St2.4b‐PCL)] with high coupling efficiency were obtained by this strategy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1633–1640, 2010  相似文献   

18.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

19.
Novel amphiphilic chitosan copolymers with mixed side chains of poly(ε‐caprolactone) and poly(ethylene oxide) (CS‐g‐PCL/PEO) were successfully synthesized by “graft to” approach via click chemistry. The melting and crystallization behaviors and crystalline morphology of CS‐g‐PCL/PEO copolymers can be adjusted by the alteration of the feed ratio of PCL and PEO segments. CS‐g‐PCL/PEO copolymers revealed crystalline morphology different from that of linear alkynyl PCL and alkynyl PEO due to the influence of brush structure of copolymers and the mutual influence of PCL and PEO segments. The hydrophilicity of the CS copolymers can be improved and adjusted by the alteration of the composition of PCL and PEO segments. Moreover, the CS copolymers can self‐assemble into spherical micelles in aqueous solution. Investigation shows that the size of the CS copolymer micelles increased with the increase of the content of hydrophobic PCL segments in copolymers, which indicated that the micellar behavior of the copolymers can be controlled by the adjustment of the ratio of PCL and PEO segments in copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3476–3486, 2010  相似文献   

20.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号