首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Neues vom P4Se4     
New Results on P4Se4 Preparation of P4Se4 from the elements yields always the β-modification of P4Se4. α-P4Se4 is obtained only with selenium deficient samples. However, it is also observed, when P4Se3 is annealed and then extracted with CS2. The insoluble part has the X-ray pattern of α-P4Se4. A reversible α-β transition is not observed. MAS-31P-NMR investigations on solid P4Se4 by Eckert et al. [2] reveal P2Se4/2 building units, which are, in view of our results, not dimer but linked to a polymeric network. Well-crystallized samples of β-P4Se4 are obtained only at measuring temperatures above 573 K. The structure is of monoclinic symmetry with the space group P21/n (a = 114.9, b = 729.0, c = 1211.0 pm, β = 120.80°). The reaction of α-P4Se3I2 with bis-(trimethyltin)selenide in CS2 at low temperature yields molecular α-P4Se4, which can be detected in solution by 31P-NMR spectroscopy. α-P4Se4 has D2d-symmetry like α-P4S4. It polymerizes at higher temperature. α-P4Se3I(SeSnMe3) and α-P4Se3(SeSnMe3)2 were observed in the course of this reaction, too. The analogous reaction of α-P4Se3I2 with bis-(trimethyltin)sulfide leads to comparable results.  相似文献   

4.
Pure yellow (CuI)P4Se4 was prepared by reaction of stoichiometric amounts of CuI, red P, and gray Se in evacuated silica ampoules. The crystal structure was determined from single crystals at room temperature. (CuI)P4Se4 crystallizes in the orthorhombic system, space group Cmca with a = 14.770 (1) Å, b = 12.029 (1) Å, c = 12.449 (1) Å, V = 2211.9(6) Å3, and Z = 8. The structure refinement converged to R = 0.0190 (wR = 0.0272) for 1020 independent reflections and 51 parameters. A prominent feature of the crystal structure are neutral polymeric P4Se4 strands which are connected by copper iodide. These strands consist of norbornane analogous P4Se3 cages which are linked by selenium bridges. The polymers are achiral since a mirror plane exists perpendicular to the strands. The single polymers are connected by [Cu2I2] units to form layers. These layers are stacked along the b axis and are connected by van der Waals-interactions only. Raman spectra of (CuI)P4Se4 differ significantly from Raman spectra of (CuI)3P4Se4 and catena-(P4Se4)x.  相似文献   

5.
The tetraphosphorus tetraselenide P4Se4 is prepared and described for the first time. It is synthetised easily by heating between 250°C and 300°C a mixture of selenide P4Se3 and selenium. It exists under two allotropie forms, α P4Se4 transforming in β P4Se4 at 300°C. α P4Se4 cristallises in the orthorhombie system (a = 7.199 Å; b = 8.661 Å; c = 12.619 Å) as β P4Se4 (a = 9.3200 Å; b = 16.8601 Å; c = 14.3399 Å). The results of the mass spectrometry and the infra-red spectrometry suggest that the structure of the new compound derives from the tetrahedral structure of white phosphorus.  相似文献   

6.
7.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

8.
Bright orange (CuBr)3P4Se4 is obtained from the reaction of CuBr, P, and Se in stoichiometric amounts (CuBr : P : Se = 3 : 4 : 4). The composition and the crystal structure of the compound were determined from single crystal X‐ray diffraction data. Lattice constants are a = 33.627(2) Å, b = 6.402(1) Å, c = 19.059(1) Å, β = 90.19(3) °, V = 4103.2(3) Å3, and Z = 12. The compound crystallizes in a structure that is related to (CuI)3P4Se4. Cages of β‐P4Se4 are stacked along the b‐axis and are separated by columns of copper(I) bromide. However, the coordination of the β‐P4Se4 cage molecules to the copper atoms in the CuBr columns in (CuBr)3P4Se4 is quite different from (CuI)3P4Se4. The monoclinic compound (space group: P21, no. 4) has an almost orthorhombic metric in combination with a threefold superstructure in [100]. Structural aspects of (CuBr)3P4Se4 are discussed with respect to the heavier homologue (CuI)3P4Se4.  相似文献   

9.
10.
The reactions of P4S3 with As4S3 and of P4Se3 with As4Se3 in the molten state yields molecules of the type P m As4–m S3 and P m As4–m Se3, respectively. A method was developed to separate the different components by the HPLC technique, and to determine their concentrations. The identification of the isomers in the HPLC pattern was achieved with the aid of the LC-MS method. In the selenium system, the distribution of the different species is statistical. In the system P4S3-As4S3, the formation of PAs3S3 with one phosphorus atom in the apical position is favoured.
  相似文献   

11.
Novel A4B3 Molecules in the System P4Se3–As4Se3 By means of 31P-NMR and masspectroscopic measurements in the system P4Se3–As4Se3 was shown that in the melt and vapour phase at all compositions molecules of the type P4 ? nAsnSe3 are formed. A separation was possible by liquid chromatography (RP 18-column). The concentration distribution of the different species is nearly statistical. In the solid state at ambient temperature regions of solid solubility with α-P4Se3, α+-phase, α-P4S3 and α-As4Se3 structure were observed. P3AsSe3 could be transformed into a plastically-crystalline phase with β-P4S3 structure. At higher temperatures the phase decomposes slowly. The thermal behaviour of PAs3Se3 is strongly influenced by the heating rate. Using low heating rates it decomposes into an amorphous phase, by fast heating a transformation into a metastable plastically-crystalline modification was achieved. During long extraction with CS2 molecules P4 ? nAsnS3 ? mSem are formed by an exchange reaction. They can also be prepared by melting the proper amounts of the elements.  相似文献   

12.
The reactions of chalcogenophosphinites with copper(I) metal salts are shown to yield highly stable, multi-metallic copper-chalcogen based clusters with novel topologies.  相似文献   

13.
The caesium salts of the novel molecular anions [P5Se12]5- and [P6Se12]4- are phase change materials and exhibit near infrared, non-linear optical second harmonic generation; [P5Se12]5- is a coordination complex with an octahedral P3+ center chelated by two [P2Se6]4- ligands whereas [P6Se12]4- features a [P2]4+ dimer chelated by two [P2Se6]4- ligands.  相似文献   

14.
15.
The new selenophosphate Rb4P6Se12 features the trans-decalin-like, [P6Se12]4- anion, a phosphorus-rich species that possesses three parallel P-P bonds and formally P2+ and P4+ centers. The synthesis of Rb4P6Se12 was accomplished with the reductive addition of P to RbPSe6 and represents an interesting example of how alkali chalcophosphates can serve as starting materials to produce new compounds under mild reaction conditions.  相似文献   

16.
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [AuI8] core, and pentanuclear [AuI4MI] (M=Cu, Ag) complexes is presented. The linear [AuI4] complex undergoes C?H functionalization of carbonyl compounds under mild reaction conditions. In addition, [AuI4AgI] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.  相似文献   

17.
18.
Preparation and Crystal Structure of the First Polymeric Phosphorus Selenide catena-(P4Se4)x Catena-(P4Se4)x was prepared in crystalline form from the elements using iodine as a catalyst, and characterized by means of X-ray diffraction and IR spectroscopy. Single-crystal investigations (space group P21/c, a = 1 119.2(3), b = 728.2(2), c = 1 142.5(3) pm, β = 115.91(2)°, V = 837.5(7) · 106 pm3) revealed parallel chains of P4Se3 hetero-norbornane units linked via Se atoms. Thus, being the first phosphorus selenide which does not contain discrete molecules, catena-(P4Se4)x can be regarded as a polymeric form of α-P4Se4 or as a crystalline modification of vitrous phosphorus selenide.  相似文献   

19.
The high-resolution 77Se NMR spectra of ammonium pyroselenite crystals were recorded in the cross-polarization mode. The angular dependences of the chemical shifts of resonance lines with respect to liquid H2SeO4 were used to determine the chemical shift tensor parameters for the 77Se nuclei of the Se2O5 pyroselenite ion.  相似文献   

20.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号