首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Principal kinetic data are presented for ethylene homopolymerization and ethylene/1‐hexene copolymerization reactions with two types of chromium oxide catalyst. The reaction rate of the homopolymerization reaction is first order with respect to ethylene concentration (both for gas‐phase and slurry reactions); its effective activation energy is 10.2 kcal/mol (42.8 kJ/mol). The r1 value for ethylene/1‐hexene copolymerization reactions with the catalysts is ~30, which places these catalysts in terms of efficiency of α‐olefin copolymerization with ethylene between metallocene catalysts (r1 ~ 20) and Ti‐based Ziegler‐Natta catalysts (r1 in the 80–120 range). GPC, DSC, and Crystaf data for ethylene/1‐hexene copolymers of different compositions produced with the catalysts show that the reaction products have broad molecular weight and compositional distributions. A combination of kinetic data and structural data for the copolymers provided detailed information about the frequency of chain transfer reactions for several types of active centers present in the catalysts, their copolymerization efficiency, and stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5315–5329, 2008  相似文献   

2.
Ethylene‐styrene (or 4‐methylstyrene) co‐oligomerization using various bis(diphenylphoshino)amine ligands in combination with chromium is discussed. GC analysis of the reaction mixture shows that various phenyl‐hexene and phenyl‐octene isomers are formed either through cotrimerization or cotetramerization. It seems that the more bulky ligands display lower selectivity to co‐oligomerization and favor ethylene homo‐oligomerization. Subsequent copolymerization of the oligomerization reaction mixture using a metallocene polymerization catalyst results in a copolymer with a branched structure as indicated by Crystaf and 13C NMR analysis. Assignments of the 13C NMR spectrum are proposed from an APT NMR experiment combined with calculated NMR chemical shift data using additivity rules. An indication of the ability of the different co‐oligomerization products to copolymerize into the polyethylene chain could be established from these assignments. Unreacted styrene and the more bulky isomers, 3‐phenyl‐1‐hexene and 3‐phenyl‐1‐octene, are not readily incorporated while branches resulting from the other isomers present in the co‐oligomerization reaction mixture are detected in the NMR spectrum. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 1488–1501, 2008  相似文献   

3.
The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1‐symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐cyclopentadienyl)ZrCl2 ( 1 ), ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 2 ), and ethylene(1‐(9)‐fluorenyl‐(R)1‐phenyl‐2‐(1‐indenyl)ZrCl2 ( 3 ). Polyethenes produced with 1 /MAO had considerable, ca. 10% amount of trans‐vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1‐hexene or 1‐hexadecene using 1 /MAO, molar mass of the copolymers varied from high to moderate (531–116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1‐olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2 /MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3 /MAO produced polyethenes with extremely small amounts of trans‐vinylene end groups and relatively low molar mass 1‐hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1 . These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1‐olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3 /MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373–382, 2008  相似文献   

4.
Manganese(II) complex catalysts with hydrotris(pyrazolyl)borate ligands have been examined on their catalytic performance in ethylene polymerization and ethylene/1‐hexene copolymerization. The activities of [Mn(L6)(Cl)(NCMe)] ( 1 ) and [Mn(L10)(Cl)] ( 2 ) activated by Al(i‐Bu)3/[Ph3C][B(C6F5)4] for ethylene polymerization go up to 326 and 11 kg mol (cat?1) h?1, respectively, (L6? = hydrotris(3‐phenyl‐5‐methyl‐1‐pyrazolyl)borate anion, L10? = hydrotris(3‐adamantyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In particular, for ethylene/1‐hexene copolymerization, complex 1 gives high‐molecular‐weight poly(ethylene‐co‐1‐hexene)s with the highest Mw of 439,000 in manganese olefin polymerization catalyst systems. Moreover, the 1‐hexene incorporation by complex 1 seems more efficient than that by [Mn(L3)(Cl)] ( 4 ) (L3? = hydrotris(3‐tertiary butyl‐5‐isopropyl‐1‐pyrazolyl)borate anion). In this work, we demonstrated that the coordination geometry and coordination number are also important factors for ethylene polymerization reaction as well as steric hindrances and ligand frameworks in our manganese(II) catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5720–5727, 2009  相似文献   

5.
A series of novel bridged multi‐chelated non‐metallocene catalysts is synthesized by the treatment of N,N‐imidazole, N,N‐dimethylimidazole, and N,N‐benzimidazole with n‐BuLi, 2,6‐dimethylaniline, and MCl4 (M = Ti, Zr) in THF. These catalysts are used for copolymerization of ethylene with 1‐hexene after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M molar ratio, and pressure of monomer on ethylene copolymerization behaviors are investigated in detail. These results reveal that these catalysts are favorable for copolymerization of ethylene with 1‐hexene featured high catalytic activity and high comonomer incorporation. The copolymer is characterized by 13C NMR, WAXD, GPC, and DSC. The results confirm that the obtained copolymer features broad molecular weight distribution (MWD) about 33–35 and high 1‐hexene incorporation up to 9.2 mol %, melting temperature of the copolymer depends on the content of 1‐hexene incorporation within the copolymer chain and 1‐hexene unit in the copolymer chain isolates by ethylene units. The homopolymer of ethylene has broader MWD with 42–46. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 417–424, 2010  相似文献   

6.
Supported chromium oxide catalysts are activated by calcination in dry air at 400–900°C, which dehydrates the carrier and binds chromium(VI) to the surface. A reduction by ethylene then provides the active species. Alternatively, the carrier can be calcined alone and afterward impregnated with an organochromium compound. Both procedures can produce an active catalyst for ethylene polymerization, but the two types differ considerably in their behavior. A third type is made by reacting an organochromium compound with the activated chromium oxide catalyst. This “mixed” catalyst displays some of the characteristics of both parents, but is not a simple combination of the two.  相似文献   

7.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

8.
Through the Diels–Alder reaction between cyclopentadiene groups attached to polystyrene in the presence of zirconocene, novel polystyrene‐supported metallocene catalysts were prepared. A novel method for immobilizing metallocene catalysts was investigated, and the resultant polystyrene‐supported metallocene for olefin polymerization was studied. The results of olefin polymerization showed that different crosslinking degrees of support in the catalyst system had significant effects on the catalytic behavior. The influence of the [Al]/[Zr] molar ratio and the temperature on the (co)polymerization activity was studied. When 1‐hexene and 1‐dodecene were used for copolymerization with ethylene, an obvious positive comonomer effect was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2650–2656, 2005  相似文献   

9.
1‐(2‐N,N‐Dimethylaminoethyl)‐2,3,4,5‐tetramethylcyclopentadienyl‐chromium dichloride ( 1 ), (2‐N,N‐dimethylaminoethyl)cyclopentadienylchromium dichloride ( 6 ), and (2‐N,N‐dimethylaminoethyl)indenylchromium dichloride ( 7 ) in the presence of modified methylaluminoxane exhibit high catalytic activities for the polymerization of ethylene with random copolymerizations of ethylene with propylene, ethylene with 1‐hexene, and propylene with 1‐hexene. These initiators conduct polymerizations to give high molecular weight polymers with low polydispersities. However, the stereoregularities are very poor in these reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2759–2771, 2002  相似文献   

10.
A series of new mono β‐diiminato titanium complexes [(N(Ar)C(CH3))2 CH]TiCl3 ( 3a : Ar = 2.6‐F2C6H3; 3b : Ar = C6F5; 3c : Ar = 2.6‐Me2C6H3) have been synthesized and characterized. The crystal structure of 3a revealed that the β‐diiminato ligand in our complex is more close to the η2‐coordination mode with little delocalization of the double bonds, which is different from the strong delocalization in the ligands of η5‐coordinated (Tolnacnac)TiCl3 and η2‐coordinated (Dipnacnac)ZrCl3. The significant electronic effects of fluoro‐substituents on the olefin polymerization activity of mono β‐diiminato titanium complexes were found. Titanium complexes with fluorine‐containing β‐diiminato ligands, on activation with MMAO, are extremely active catalysts for polymerization of ethylene. The activity of copolymerization of ethylene and 1‐hexene is higher than homopolymerization of ethylene and increases with the increase of 1‐hexene concentrations, which show the positive “comonomer effect.” The molar percentage of 1‐hexene incorporation and polymer microstructures can also be modulated by the initial comonomer concentrations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 211–217, 2008  相似文献   

11.
Homogeneous tandem catalysis of the bis(diphenylphoshino)amine‐chromium oligomerization catalyst with the metallocenes Ph2C(Cp)(9‐Flu)ZrCl2 and rac‐EtIn2ZrCl2, is discussed. GC, CRYSTAF, and 13C NMR analysis of the products obtained from reactions at constant temperatures show that during tandem catalysis, α‐olefins, mainly 1‐hexene and 1‐octene, are produced from ethylene by the oligomerization catalyst and subsequently built into the polyethylene chain. At 40 °C the Cr/PNP catalyst acts as a tetramerization catalyst while the polymerization catalyst activity is low. Copolymerization of ethylene and the in situ produced α‐olefins have also been carried out by increasing the temperature from 40 °C, where primarily oligomerization takes place, to above 100 °C, where polymerization becomes dominant. The melting temperature of the polymer is dependent on the catalyst and cocatalyst ratios as well as on the temperature gradient followed during the reaction, while the presence of the oligomerization catalyst reduces the activity of the polymerization catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6847–6856, 2006  相似文献   

12.
A series of pyrrole‐containing diarylphosphine and diarylphosphine oxide ligands were prepared. The catalytic activity of the corresponding in‐situ‐generated chromium catalysts was investigated during selective ethylene oligomerization reactions. Variations in the ligand system were introduced by modifying the diarylphosphine and pyrrole moieties that affect the steric and electronic properties. Minor changes in the ligand structure and the composition of activators significantly changed the catalytic activity, selectivity toward linear alpha‐olefins (LAO) versus polyethylene (PE), and the distribution of oligomeric products. The presence of trifluoromethyl groups on the diphenyl rings in ligand 3 promoted oxidation to form the corresponding phosphine oxide structure, 3o , which dramatically enhanced the catalytic activity of ethylene trimerization. The in‐situ‐generated chromium complex based on 3o activated by DMAO (dry methylaluminoxane)/TIBA (triisobutylaluminum) was used to achieve activity of about 1250 g (mmol of Cr)−1 h−1 with 98.5 mol % 1‐hexene, along with a negligible amount of PE side product. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 444–450  相似文献   

13.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

14.
Summary: Silica supported chromium oxide catalysts have been used for many years to manufacture polyethylene and they still account for more than 50% of world production of high‐density polyethylene. Along with its commercial success, the catalytic mechanism and polymerization kinetics of silica supported chromium oxide catalysts have been the subject of intense research. However, there is a lack of modeling effort for the quantitative prediction of polymerization rate and polymer molecular weight properties. The chromium oxide catalyzed ethylene polymerization is often characterized by the presence of an induction period followed by a steady increase in polymerization rate. The molecular weight distribution is also quite broad. In this paper, a two‐site kinetic model is developed for the modeling of ethylene polymerization over supported chromium oxide catalyst. To model the induction period, it is proposed that divalent chromium sites are deactivated by catalyst poison and the reactivation of the deactivated chromium sites is slow and rate controlling. To model the molecular weight distribution broadening, each active chromium site is assumed to have different monomer chain transfer ability. The experimental data of semibatch liquid slurry polymerization of ethylene is compared with the model simulations and a quite satisfactory agreement has been obtained for the polymerization conditions employed.

Polymerization rates at different reaction temperatures: symbols – data, lines – model simulations.  相似文献   


15.
Ethene homopolymerization and copolymerization with 1‐hexene were performed with three new tetramethyldisilylene‐bridged zirconocene catalysts with 2‐indenyl ligand ( A ), 2‐tetrahydroindenyl ligand ( B ), and tetramethyl‐cyclopentadienyl ligand ( C ) and with methylaluminoxane as a cocatalyst. Catalysts A and B showed substantial comonomer incorporation, resulting in a copolymer melting temperature more than 20° lower than that of the corresponding homopolymer. In contrast, catalyst C produced a copolymer with a low 1‐hexene content and a high melting temperature. The reduction in the molecular weight with 1‐hexene addition also correlated well with the comonomer incorporation. For all three catalysts, the homopolymer and copolymer unsaturations indicated frequent chain termination after 1‐hexene insertion and a high degree of chain‐end isomerization during the homopolymerization of ethene. The chain transfer to Al in the cocatalyst also appeared to be important. The comonomer response could be correlated with the structural properties of the catalyst, as derived from quantum chemical calculations. A linear model, calibrated against recent experiments with unbridged (MenC5H5?n)2ZrCl2 catalysts, suggested that the low comonomer incorporation obtained with catalyst C was caused partly by a narrow opening angle between the aromatic ligands and partly by steric hindrance in the transition state of comonomer insertion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1622–1631, 2003  相似文献   

16.
This article discusses the similarities and differences between active centers in propylene and ethylene polymerization reactions over the same Ti‐based catalysts. These correlations were examined by comparing the polymerization kinetics of both monomers over two different Ti‐based catalyst systems, δ‐TiCl3‐AlEt3 and TiCl4/DBP/MgCl2‐AlEt3/PhSi(OEt)3, by comparing the molecular weight distributions of respective polymers, in consecutive ethylene/propylene and propylene/ethylene homopolymerization reactions, and by examining the IR spectra of “impact‐resistant” polypropylene (a mixture of isotactic polypropylene and an ethylene/propylene copolymer). The results of these experiments indicated that Ti‐based catalysts contain two families of active centers. The centers of the first family, which are relatively unstable kinetically, are capable of polymerizing and copolymerizing all olefins. This family includes from four to six populations of centers that differ in their stereospecificity, average molecular weights of polymer molecules they produce, and in the values of reactivity ratios in olefin copolymerization reactions. The centers of the second family (two populations of centers) efficiently polymerize only ethylene. They do not homopolymerize α‐olefins and, if used in ethylene/α‐olefin copolymerization reactions, incorporate α‐olefin molecules very poorly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1745–1758, 2003  相似文献   

17.
An investigation of the polymer particle growth characteristics and polymer molecular weight and composition distributions in ethylene homopolymerization and ethylene/1‐hexene copolymerization has been carried out with a catalyst comprising a zirconocene and methylaluminoxane immobilized on a silica support. The presence of 1‐hexene leads to higher productivity and easier fragmentation of the support during particle growth. Crystallization analysis fractionation and gel permeation chromatography analysis of ethylene/1‐hexene copolymers prepared at different polymerization times reveals a broadening of the chemical composition distribution with increasing polymerization time as a result of the gradual formation of a relatively high‐molecular‐weight, ethylene‐rich fraction. The results are indicative of significant monomer diffusion effects in both homopolymerization and copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2883–2890, 2006  相似文献   

18.
The chain transfer to monomer reactions promoted by primary and secondary growing chains in the propene polymerization promoted by ansa‐zirconocenes and postmetallocene precursors are studied by using DFT methods. From the theoretical results it comes out that the prevalence of propene insertion over β‐hydrogen transfer to the monomer decreases drastically in the presence of a secondary chain. Furthermore, we explained the reason why C2‐symmetric metallocene catalysts promote the selective formation of cis but‐2‐enyls end group after a 2,1 inserted unit whereas for octahedral bis(phenoxy‐imine)titanium‐based catalysts, chain release promotes exclusively the formation of allyl terminated chain end. These results might be useful to design ligand precursors able to obtain not only high Mn PP polymers but also tuned chain end groups to build new polymer architectures. Overall, a more general picture of the enantioselectivity of the chain transfer to monomer processes is reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 699–708, 2010  相似文献   

19.
A series of trichlorotitanium complexes containing 2‐(1‐(arylimino)propyl)quinolin‐8‐olates was synthesized by stoichiometric reaction of titanium tetrachloride with the corresponding potassium 2‐(1‐(arylimino)propyl)quinolin‐8‐olates and was fully characterized by elemental analysis, nuclear magnetic resonance spectroscopy, and by single‐crystal X‐ray diffraction study of representative complexes. All titanium complexes, when activated with methylaluminoxane, exhibited high catalytic activity toward ethylene polymerization [up to 1.15 × 106 g mol?1(Ti) h?1] and ethylene/α‐olefin copolymerization [up to 1.54 × 106 g mol?1 (Ti) h?1]. The incorporation of comonomer was confirmed to amount up to 2.82 mol % of 1‐hexene or 1.94 mol % of 1‐octene, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The copolymerization of ethylene with triphenylamine (TPA)‐containing α‐olefin monomer 1 using a rac‐Et(Ind)2ZrCl2 ( EBIZr )/MAO catalytic system was investigated to prepare polyethylene with pendent TPA groups. Despite the presence of a large excess of TPA moieties, the polymerization reactions efficiently produce copolymers of high‐molecular‐weight with the comonomer incorporation up to 6.1 mol % upon varying the comonomer concentration in the feed. Inspection of the aliphatic region of the 13C‐NMR spectrum and the estimated copolymerization parameters (r 1 ≈ 0 for 1 and rE ≈ 43 for ethylene) reveal the presence of isolated comonomer units in the polymer chain. While UV–vis absorption measurements of the copolymers show an invariant absorption feature, PL spectra exhibit a slightly red‐shifted emission with increasing content of 1 in the polymer chain. All the copolymers show high thermal stability (Td5 > 436 °C), and the electrochemical stability toward oxidation is also observed. Particularly, the copolymer displays hole‐transporting ability for the stable green emission of Alq3 when incorporated into the hole‐transporting layer of an electroluminescence device. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5816–5825, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号