首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

2.
We report the synthesis and characterization of a series of novel diblock copolymers, poly(cholesteryl methacrylate‐b‐2‐hydroxyethyl methacrylate) (PCMA‐b‐PHEMA). Monomers, cholesteryl methacrylate (CMA) and 2‐(trimethylsiloxy)ethyl methacrylate (HEMA‐TMS), were prepared from methyacryloyl chloride and 2‐hydroxyethyl methacrylate, respectively. Homopolymers of CMA, PCMA, with well‐defined molecular weights and polydispersity indices (PDI), were prepared by reversible addition fragmentation and chain transfer (RAFT) method. Precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), were synthesized using PCMA as macromolecular chain transfer agent and monomer, HEMA‐TMS. Product diblock copolymers, PCMA‐b‐PHEMA, were prepared by deprotecting trimethylsilyl units in the precursor diblock copolymers using acid catalysts. Detailed molecular characterization of the precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), and the product diblock copolymers, PCMA‐b‐PHEMA, confirmed the composition and structure of these polymers. This versatile synthetic strategy can be used to prepare new amphiphilic block copolymers with cholesterol in one block and hydrogen‐bonding moieties in the second block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6801–6809, 2008  相似文献   

3.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

4.
Through reversible addition‐fragmentation chain transfer (RAFT) polymerization of t‐butyl acrylate (tBA) and RAFT copolymerization of 2‐dimethylaminoethyl methacrylate (DMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), block‐comb copolymer of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) was prepared. After the self‐assembly of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) into core‐shell spherical micelles, P(PEGMEMA‐co‐DMAEMA) segments of the shell was crosslinked with 1,2‐bis(2‐iodoethoxy)ethane and the core of PtBA was selectively hydrolysized with trifluoroacetic acid. Thus, zwitterionic shell‐crosslinked micelles with positively charged outer shell and negatively charged inner core were obtained. Dynamic light scattering, transmission electron microscope, Zeta potential measurement, and nuclear magnetic resonance were used to confirm the formation of the zwitterionic shell‐crosslinked micelles. They showed the excellent resistance to the variation of pH value and possessed the positive values throughout the whole range of pH range even if the carboxylic groups of the micelles was much more than ammonium groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

6.
Monodisperse poly(D ,L ‐lactide) (PDLLA) microspheres were prepared by dispersion polymerization of D ,L ‐lactide in xylene/heptane (1/2, v/v) with poly[(dodecyl methacrylate)‐co‐(2‐hydroxyethyl methacrylate)] (P(DMA‐co‐HEMA)) as a dispersion stabilizer. P(DMA‐co‐HEMA) contains hydroxy groups, which act as an initiation group for pseudoanionic dispersion polymerization. The best coefficient of variation (CV) values concerning particle diameter distribution and the particle diameter of obtained PDLLA microspheres were 3.7% and 5.3 μm, respectively. The particle diameter decreased with increasing concentration of P(DMA‐co‐HEMA) and HEMA maintained low CV (<10%) values. As a result, monodisperse PDLLA microspheres ranging from 1.3 to 5.3 μm were obtained. In addition, it was found that monodisperse PDLLA microspheres were obtained by sufficient capture of growing polymers and monomers in the particle growth stage. Therefore, the HEMA concentration in P(DMA‐co‐HEMA) strongly affecting the capturing capability is the most important factor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5230–5240, 2009  相似文献   

7.
Two donor‐π‐acceptor (D‐π‐A) type naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole (NT)‐based conjugated copolymers (CPs), namely, PBDT‐TT‐DTNT‐HD and PBDT‐TT‐DTNT‐OD, containing different side chain length (2‐hexyldecyl, HD and 2‐octyldodecyl, OD) anchoring to thiophene π‐bridge between the two‐dimensional (2D) 5‐((2‐butyloctyl)thieno[3,2‐b]thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐TT) unit and NT moiety are developed and fully characterized. The resultant two copolymers exhibited broader absorption in wide range of 300–820 nm and obviously deepened EHOMO of approximately −5.50 eV. The effects of side chain length on film‐forming ability, absorption, energy levels, aggregation, dielectric constant (ɛr), mobility, morphology, and photovoltaic properties are further systematically investigated. It was found that the side chain length had little impact on solution‐processability, absorption, energy levels, and aggregation in CB solution of resultant CPs. However, tinily increasing side chain length promoted to form the more ordered structure of neat polymer film even if the corresponding ɛr decreased. As a result, the side‐chain‐extended PBDT‐TT‐DTNT‐OD:PC71BM‐based device achieved 32% increased FF than that of PBDT‐TT‐DTNT‐HD:PC71BM and thus the PCE was significantly raised from 3.99% to 5.21%, which were benefited from 2 times higher SCLC hole mobility, more favorable phase separation, and improved exciton dissociation. These findings could provide an important and valuable insight by side chain modulation for achieving efficient PSCs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2059–2071  相似文献   

8.
Our objective was to synthesize and evaluate lactic acid‐ and carbonate‐based biodegradable core‐ and core‐corona crosslinkable copolymers for anticancer drug delivery. Methoxy poly(ethylene glycol)‐b‐poly(carbonate‐co‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxane‐2‐one) [mPEG‐b‐P(CB‐co‐LA‐co‐MAC)] and methoxy poly(ethylene glycol)‐b‐poly(acryloyl carbonate)‐b‐poly(carbonate‐co‐lactide) [mPEG‐b‐PMAC‐b‐P(CB‐co‐LA)] copolymers were synthesized by ring‐opening polymerization of LA, CB, and MAC using mPEG as an macroinitiator and 1,8‐diazabicycloundec‐7‐ene as a catalyst. These amphiphilic copolymers which exhibited low polydispersity and critical micelle concentration values (0.8–1 mg/L) were used to prepare micelles with or without drug and stabilized by crosslinking via radical polymerization of double bonds introduced in the core and interface to improve stability. mPEG114b‐P(CB8co‐LA35co‐MAC2.5) had a higher drug encapsulation efficiency (78.72% ± 0.15%) compared to mPEG114b‐PMAC2.5b‐P(CB9co‐LA39) (20.29% ± 0.11%).1H NMR and IR spectroscopy confirmed successful crosslinking (~70%) while light scattering and transmission electron microscopy were used to determine micelle size and morphology. Crosslinked micelles demonstrated enhanced stability against extensive dilution with aqueous solvents and in the presence of physiological simulating serum concentration. Furthermore, bicalutamide‐loaded crosslinked micelles were more potent compared to non‐crosslinked micelles in inhibiting LNCaP cell proliferation irrespective of polymer type. Finally, these results suggest crosslinked micelles to be promising drug delivery vehicles for chemotherapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
A facile method for the fabrication of well‐dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core–shell–corona type triblock copolymer [poly(styrene‐b‐2‐vinylpyridine‐b‐ethylene oxide), PS‐b‐P2VP‐b‐PEO] is employed as the pore‐directing agent. Negatively charged PtCl42? ions preferably interact with the protonated P2VP+ blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry.  相似文献   

10.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

11.
Poly(perfluorooctyl‐ethylenoxymethylstyrene) (PFDS) and poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) (PFDA) homopolymers as well as poly(styrene)‐b‐poly(perfluorooctyl‐ethylenoxymethylstyrene) (PS‐b‐PFDS) and poly(styrene)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) acrylate) (PS‐b‐PFDA) block copolymers of various chain lengths were synthesized by nitroxide‐mediated radical polymerization in the presence of either 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) in the case of FDS monomer or Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl)‐N‐oxyl (DEPN) in the case of the FDA monomer. The molar composition of the block copolymers was determined by elemental analysis and proton NMR while the blocky structure was checked by SEC analysis in trifluorotoluene. Block copolymers PS‐b‐PFDS (3.6K/60K) and PS‐b‐PFDA (3.7K/43K) were soluble in neat CO2 at moderate pressure and temperature, indicating the formation of micelles. Similar block copolymers with a longer PS block such as PS‐b‐PFDA (9.5K/49K), corresponding to a lower CO2‐philic/CO2‐phobic balance, were insoluble in neat CO2 but could be solubilized in the presence of styrene as a cosolvent. Additionally, surface and bulk properties of PS‐b‐PFDA were investigated, indicating the same surface tension as for the PFDA homopolymer (γLV = 10.3 mN/m) and a bulk nanostructured morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3537–3552, 2004  相似文献   

12.
A novel polymeric photoinitiator P(MPBP‐co‐DMAEMA), bearing side‐chain benzophenone (BP) and coinitiator amine, was synthesized through free radical copolymerization of a polymerizable photoinitiator, 4‐[(4‐maleimido)phenoxy]benzophenone (MPBP), and a polymerizable coinitiator amine, N, N‐dimethylaminoethyl methacrylate (DMAEMA). In order to find out the influences of coinitiator amine on photopolymerization, a polymeric coinitiator amine, P(DMAEMA), was also synthesized for comparison. FT‐IR, 1H NMR, and GPC analyses confirm the structures of polymers. The UV‐Vis spectra of polymeric photoinitiator P(MPBP‐co‐DMAEMA) and polymerizable photoinitiator MPBP are similar, and both exhibit high red‐shifted maximal absorption as compared with BP. The photopolymerization of 1,6‐hexanediol diacrylate (HDDA) and trimethylolpropane triacrylate (TMPTA), initiated by MPBP/DMAEMA, MPBP/P(DMAEMA), and P(MPBP‐co‐DMAEMA) systems, was studied by photo‐DSC. The results indicate that P(MPBP‐co‐DMAEMA) is most efficient for the polymerization of both HDDA and TMPTA, and MPBP/P(DMAEMA) is the least efficient of the three photoinitiating systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

14.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

15.
Reverse iodine transfer polymerization (RITP), offering the appealing potential of the in situ generation of transfer agents out of molecular iodine I2, is employed in the synthesis of anionic amphiphilic diblock copolymers of poly(styrene) and poly(acrylic acid). Starting with well‐characterized poly(styrene) as macro‐transfer agents synthesized by RITP, diblock copolymers poly(styrene)‐b‐poly(tert‐butyl acrylate) of various lengths are successfully yielded in solution with a good architectural control. These blocks are then subjected to acid deprotection and subsequent pH control to give rise to anionic amphiphilic poly(styrene)‐b‐poly(acrylic acid). Besides, homopolymers of tert‐butyl acrylate are produced by RITP both in solution and in emulsion. Furthermore, a fruitful trial of the synthesis of diblock copolymers poly(tert‐butyl acrylate)‐b‐poly(styrene) is carried out through chain extension of the poly(tert‐butyl acrylate) latex as a macro‐transfer agent in seeded emulsion polymerization of styrene. Finally, the prepared block copolymer is deprotected to bring about its amphiphilic nature and a pH control caters for its anionic character. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4389–4398  相似文献   

16.
The graft polymers [poly(isoprene)‐graft‐poly(styrene)] (PI‐g‐PS), [poly(isoprene)‐graft‐poly(isoprene)] (PI‐g‐PI), [poly(isoprene)‐graft‐(poly(isoprene)‐block‐poly(styrene))] PI‐g‐(PI‐b‐PS), and [poly(isoprene)‐graft‐(poly(styrene)‐block‐poly(isoprene))] PI‐g‐(PS‐b‐PI) with PI as main chain were synthesized through living anionic polymerization (LAP) mechanism and the efficient coupling reaction. First, the PI was synthesized by LAP mechanism and epoxidized in H2O2/HCOOH system for epoxidized PI (EPI). Then, the graft polymers with controlled molecular weight of main chain and side chains, and grafting ratios were obtained by coupling reaction between PI?Li+, PS?Li+, PS‐b‐PI?Li+, or PI‐b‐PS?Li+ macroanions and the epoxide on EPI. The target polymers and all intermediates were well characterized by SEC,1H NMR, as well as their thermal properties were also evaluated by DSC. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
We chose DPP‐BDT‐DPP {DPP=diketopyrrolopyrrole, BDT=4,8‐di‐[2‐(2‐ethylhexyl)‐thienyl]benzo[1,2‐b:4,5‐b′]dithiophene} as a model backbone and varied the anchoring groups [? C5H11, ? COOCH3, and ? SiCH3(OSiCH3)2] terminated on the N‐substituted alkyl‐chain spacer of the DPP units to study the effect of anchoring terminals on the morphology of blend film and on the device performances of bulk heterojunction solar cells. By replacing the nonpolar ? C5H11 anchoring terminal with the polar ? COOCH3 anchoring terminal leads to an enhancement in the short‐circuit current density (Jsc) (4.62 vs. 9.32 mA cm?2), whereas the value of Jsc sharply decreases to 0.45 mA cm?2 if the ? C5H11 anchoring terminal is replaced by a ? SiCH3(OSiCH3)2 group. The changes in Jsc are associated with changes in the π–π stacking distance (3.39→3.34 Å vs. 3.39→3.45 Å) and the phase size (50→20 nm vs. 50→>250 nm) through alteration of the anchoring group from ? C5H11 to ? COOCH3 versus from ? C5H11 to ? SiCH3(OSiCH3)2. Interestingly, the anchoring terminals bring about drastic changes in molecular orientations, which result in different out‐of‐plane hole transport. This is the first time this effect has been systemically demonstrated to improve photocurrent generation by manipulating the dipolar anchoring groups terminated on the alkyl‐chain spacer.  相似文献   

18.
Polymerization‐induced self‐assembly of block copolymer through dispersion RAFT polymerization has been demonstrated to be a valid method to prepare block copolymer nano‐objects. However, volatile solvents are generally involved in this preparation. Herein, the in situ synthesis of block copolymer nano‐objects of poly(ethylene glycol)‐block‐polystyrene (PEG‐b‐PS) in the ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIN][PF6]) through the macro‐RAFT agent mediated dispersion polymerization is investigated. It is found that the dispersion RAFT polymerization of styrene in the ionic liquid of [BMIN][PF6] runs faster than that in the alcoholic solvent, and the dispersion RAFT polymerization in the ionic liquid affords good control over the molecular weight and the molecular weight distribution of the PEG‐b‐PS diblock copolymer. The morphology of the in situ synthesized PEG‐b‐PS diblock copolymer nano‐objects, e.g., nanospheres and vesicles, in the ionic liquid is dependent on the polymerization degree of the solvophobic block and the concentration of the fed monomer, which is somewhat similar to those in alcoholic solvent. It is anticipated that the dispersion RAFT polymerization in ionic liquid broads a new way to prepare block copolymer nano‐objects. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1517–1525  相似文献   

19.
The structural isomer effects on phase behavior of block copolymer/FeCl3 hybrids were investigated by comparing structures of two series of blends based on polystyrene‐b‐poly(4‐vinylpyridine) (PS‐P4VP) and polystyrene‐b‐poly(2‐vinylpyridine) (PS‐P2VP), with the same molecular weight and the same composition. By conbining fourier transform infrared (FT‐IR) spectroscopy and differencial scaninng calorimetry, successful achievements of selective dispersion of FeCl3 into poly(vinylpyridine) phase via coordination were verified. Complementary morphological observation by transmission electron microscopy and small‐angle X‐ray scattering (SAXS), it has been clarified that phase behavior for two isomer series is considerably different. That is, neat PS‐P4VP formed thicker cylindrical domains than that of neat PS‐P2VP due to much stronger Flory‐Huggins interaction parameter χ, χPS‐P4VP » χPS‐P2VP. As for PS‐P2VP/FeCl3 hybrids, morphological transition can be taken place at the smaller amount of metal salt; furthermore, P2VP blend series form lamellar structures with evidently larger periodic length at the same amount of metal salt. This is probably caused by the event that excess metal salt also contributes to lamellar expansion by localizing at the center of P2VP lamellar phase. Moreover, the saturation limit of introduced metal salt in P2VP was smaller than that in P4VP due to the steric hindrance for a lone pair electrons on nitrogen atoms directed to the main chain of P2VP. These results can be explained by the structural isomer effects on the conformation of the P2VP chains at coordinated state with FeCl3, that is, P2VP chains prefer to form the intramolecular coordination due to the short range interaction so as to make themselves stiffer, whereas P4VP chains tend to adopt the long range interaction including intra‐ and intermolecular coordinations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 377–386  相似文献   

20.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号