首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnO2/Pd nanocomposites were synthesized via sol-gel method followed by variable processing procedures. The materials are sensitive to CO gas in the concentration range 2-100 ppm at room operating temperature. It was shown that modification of nanocrystalline tin dioxide by Pd changes the temperature dependence of sensor response, decreasing the temperature of maximal signal. To understand the mechanism of room temperature CO sensitivity, a number of SnO2/Pd materials were characterized by XRD, TEM, BET, XPS and TPR techniques. From the results of FTIR, impedance and sensing measurements under variable ambient conditions it was concluded that improvement in CO sensitivity for Pd-modified SnO2 is due to alteration of CO oxidation pathway. The reaction of CO with surface OH-groups at room temperature was proposed, the latter being more reactive than oxygen species due to the possible chain character of the reactions. It was proposed that Pd additive may initiate chain processes at room temperature.  相似文献   

2.
Two dimensional(2D) materials are promising gas sensing materials, but the most of them need to be heated to show promising sensing performance. Sensing structures with high sensing performance at room-temperature are urgent. Here, another 2D material, violet phosphorus(VP) nanoflake is investigated as gas sensing material. The VP nanoflakes have been effectively ablated to have layers of 1–5 layers by laser ablation in glycol. The VP nanoflakes are combined with graphene to form VP/G heterostru...  相似文献   

3.
掺镁YFeO3固溶体的电导和气敏性能研究   总被引:1,自引:0,他引:1  
用化学共沉淀法制备了复合氧化物YFeO3镁掺杂固溶体Y1-xMgxFeO3气敏半导体材料,并对其相组成、电导和气敏性能进行了研究。结果表明:Mg2+在YFeO3的A位固溶范围为0糩]x糩0.8;电导测量显示,该p型固溶材料电导突变温度较纯相YFeO3低100℃以上;900℃下灼烧4h所得的Y0.94Mg0.06FeO3粉料制作的元件在257℃时对乙醇灵敏度最高,对4.5*mol/L乙醇的灵敏度高达44;选择性较好,4.5韒ol/LC2H5OH的灵敏度是45*mol/Lpetrol的4.0倍。  相似文献   

4.
Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H2S) at room temperature, using thin films of rare‐earth metal (RE)‐based metal–organic framework (MOF) with underlying fcu topology. This unique MOF‐based sensor is made via the in situ growth of fumarate‐based fcu ‐MOF (fum‐ fcu ‐MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H2S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum‐ fcu ‐MOF sensor exhibits a highly desirable detection selectivity towards H2S vs. CH4, NO2, H2, and C7H8 as well as an outstanding H2S sensing stability as compared to other reported MOFs.  相似文献   

5.
To develop gas sensing materials with high performance,high sensitivity,excellent selectivity and quick response & recovery behavior,nanocrystalline material of rare-earth composite oxide HoFeO3 with the structure of perovskite type was synthesized by sol-gel method in the system of citric acid with the Ho2O3,Fe(NO3)3·9H2O,nitric acid(1: 1 vloume fraction)as the starting materials. The structure and crystal state of the powder were determined on an X-ray diffractometer(Germany Bluker D8-Advance)with a Cu K" radiation(wavelength λ = 0. 15406 nm)operating at 20 mA and 40 kV. The shape and size were analyzed with the help of JEM-100SX Transimission electron microscopy. The results show this perovskite-type oxide is spherical with the mean grain size of 25 nm and the dispersity of it is good. The influence of temperature on the sensitivity of sensors,gas sensors's selectivity and the response and recovery characteristics are tested at the optimum working temperature 310℃. The study of sensor's gas sensing characteristic shows that the sensitivities of HoFeO3 to 0. 5! C2H5OH is 103,which is 5 times of other tested gases,such as H2S、H2、SO2、gasoline and acetone. So the sensors based on HoFeO3 show good sensitivity and selectivity to C2H5OH. The response and reversion characteristic of sensor to 0. 5! ethanol at 310℃ is good too. The response time and recovery time are 12 and 7s,respectively.  相似文献   

6.
溶胶-凝胶薄膜光纤传感器法测定空气中二氧化氮   总被引:4,自引:0,他引:4  
以四乙氧基硅烷合成溶胶-凝胶薄膜,包埋偶氮试剂制备得到对二氧化氮具有灵敏响应的传感膜;与分支光纤等元件耦合成光纤传感器,通过累积吸收法能够现场测定空气中的低浓度二氧化氮.其检出限为每小时5ng/L;测定相对标准偏差为4.4%(n=6,C(NO2)=200ng/L,1h)。实验表明,CO2、NO、SO2、NO等共存气体在低浓度下对传感器测定NO2无明显干扰。  相似文献   

7.
We report a facile strategy to prepare a large amount of ultrathin graphdiyne (GDY) with good crystallinity in the mixture of oil–water systems. By simply mixing the solution of GDY monomer in CHCl3 and the copper acetate solution as a catalyst in water and stirring at room temperature, ultrathin GDY films with a thickness of ∼4 nm were obtained in a yield of 95 %. This work provides a feasible path for the substantial preparation of GDY films and may pave the way to the development of substantial preparation of the GDY materials.  相似文献   

8.
An original power controlling driving/reading circuit for Porous Silicon JFET (PSJFET) gas sensors is presented. The PSJFET is an integrated p-channel JFET with two independent gates: a meso-structured PS layer, acting as a sensing, floating gate, which modulates the JFET current upon adsorption/desorption of specific analytes, and a high-impedance electric gate, which allows the JFET current tuning independently from analytes in the environment. The circuit exploits the independence of the sensing and electrical gate terminals to set/control the sensor power-dissipation, which is kept almost constant independently from adsorption/desorption-induced effects, while simultaneously carrying out a current-voltage conversion. For such a purpose, a negative feedback loop is used to modulate the PSJFET electric gate voltage, which becomes the output signal, while keeping constant the source-drain sensor current and, hence, the power dissipation. The proposed approach is validated by performing time-resolved measurements on PSJFET sensors under different NO2 concentrations (100ppb, 300ppb, 500ppb), at room temperature.  相似文献   

9.
Graphdiyne(GDY)has the unique feature in the topological ordered arranged sp-and sp2-hybridized carbon atoms,thus deriving a series of 2D allotropes.Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms,GDY possesses a natural band gap with a Dirac cones structure.And GDY exhibits semiconductor property with a conductivity of 2.516×10-4 S/m at room temperature.The topological distribution of alkyne and benzene bonds of GDY makes its surface charge distribution extremely uneven,which produces high intrinsic activity for further modification.Its unique molecular structure endows the specific interaction with various species,such as ions,atoms,molecules and nanoparticles,showing excellent charge transport capability and unique advantages in mass transfer and energy conversion.From the view of the interaction principle between GDY and different compositions,we summarized the application of GDY-based materials in the fields of catalysis,energy conversion and storage,biological detection and so on.  相似文献   

10.
Gas sensors based on oxygen plasma functionalised MWCNTs and plasma-treated nanotubes decorated either with gold nanoclusters or tin oxide nanoparticles were evaluated for the detection of NO2, CO and ethylene. The sensor active layers were deposited by airbrushing onto micro-machined silicon transducers. Sensitivity, linearity, selectivity, response and recovery times and humidity effect were studied. XPS and TEM were employed to analyse the gas sensitive films. Among the different sensors tested, those based on tin oxide decorated MWCNTs showed the highest sensitivity to NO2 (at ppb level) and the lowest humidity cross-sensitivity when operated at room temperature.  相似文献   

11.
以浸渍技术制备的纳米CuO颗粒作敏感电极,以YSZ作为固体电解质制备了阻抗谱型NO2传感器。采用XRD、SEM对NO2传感器敏感材料的相组成和微观形貌进行了表征,应用电化学工作站测试了传感器的敏感性能。结果表明:浸渍法制得的CuO颗粒均匀分布在电解质的多孔层内,粒径在200 nm左右。在450~550℃,传感器对NO2有良好的敏感性,在0.1 Hz总阻抗|Z|=(Z′2+Z″2)~(1/2)姨与NO2浓度(0~200 mL.m-3)呈良好的线性关系。传感器的固有响应时间为50 s,共存的O2和CO2气体对传感器敏感性能几乎没有影响。  相似文献   

12.
Novel high-surface-area mesoporous catalysts of type Al-MCM-41 containing transition metals such as iron, nickel, cobalt, zinc, copper, and cobalt were prepared and characterized using techniques such as BET, FTIR, ICP-MS, XPS, and XRD. The XPS measurements indicated that the transition-metal particles are located in the bulk or pore channels of the Al-MCM-41 materials. A detailed in situ FTIR investigation undertaken on the adsorption and disproportionation of NO and CO over the transition-metal-Al-MCM-41 mesoporous catalysts indicated the formation of various NO/CO species or complexes with active metal sites. The structure and dynamics of the metal activated complex and reactive species formed during the CO/NO reaction together with advantages of these catalysts and the influence of reaction temperature and pressure have been studied. NO adsorption at room temperature leads to the formation of adsorbed N(2)O, NO(2), MNO(2), MNO, and [M(NO)(2)] complexes. CO adsorption at room temperature leads to the formation of physisorbed carbon dioxide and cationic Lewis acid carbonyl moieties as well as transition-metal carbonyl complexes. The copper mesoporous catalysts prepared by different procedures (ion exchanged and as-synthesized) were compared for their interactions with CO and NO probe molecules.  相似文献   

13.
1CH2+N2O反应的势能面   总被引:2,自引:0,他引:2  
利用密度泛函理论(B3LYP)计算了1CH2+N2O反应的反应物、中间体、过渡态及产物 的几何构型.进而用从头算方法(QCISD(T))计算了单点能量.由此描绘了反应的势能面, 确定了反应的最终产物通道为N2+H2CO和NO+HCN+H.后者比前者有更大的分支比.N2、H2CO 、NO、HCN的存在有待于实验检测.作者认为,反应在室温下是加成-消除机理,而在高温下 可以通过直接取代的机理获得N2+H2CO.  相似文献   

14.
New hybrid materials based on nanocrystalline tin dioxide and two types of surface-immobilized polymer organosilicon structures with hydrocarbon substitutes were synthesized for gas sensors application. The sensing responses of pure SnO2 and hybrid samples were determined in the presence of NO2 (ppb range), CO (ppm range) and different humidity (RH = 15 – 95 %). Also the influence of water presence on sensor signal towards NO2 and CO was analyzed. Strong influence of nature of hydrocarbon substitutes on sensor response value towards NO2 and H2O was discovered.  相似文献   

15.
胡承忠  李峰  刘向东 《化学学报》2008,66(14):1641-1646
采用密度泛函理论计算研究了氮化硼纳米管及碳掺杂氮化硼纳米管对CH4, CO2, H2, H2O, N2, NH3, NO2, O2, F2等十余种气体小分子的气敏特性. 研究结果表明: 氮化硼纳米管对CH4, CO2, H2, H2O, N2, NH3等气体分子不敏感, 而对O2, NO2, F2等气体分子比较敏感. 虽然碳掺杂氮化硼纳米管可以明显地改变其表面的化学反应活性, 增强了气体分子与氮化硼纳米管之间的相互作用, 但是并不能明显地改变其对所研究气体分子的敏感性.  相似文献   

16.
The formation of semiconductor heterostructures is an effective approach to achieve high performance in electrical gas sensing. However, such heterostructures are usually prepared via multi-step procedures. In this contribution, by taking advantage of the crystal phase-dependent electronic property of SnSex based materials, we report a one-step colloid method for the preparation of SnSe(x%)/SnSe2(100−x%) p–n heterostructures, with x ≈30, 50, and 70. The obtained materials with solution processability were successfully fabricated into NO2 sensors. Among them, the SnSe(50 %)/SnSe2(50 %) based sensor with an active layer thickness of 2 μm exhibited the highest sensitivity to NO2 (30 % at 0.1 ppm) with a limit of detection (LOD) down to 69 ppb at room temperature (25 °C). This was mainly attributed to the formation of p–n junctions that allowed for gas-induced modification of the junction barriers. Under 405 nm laser illumination, the sensor performance was further enhanced, exhibiting a 3.5 times increased response toward 0.1 ppm NO2, along with a recovery time of 4.6 min.  相似文献   

17.
Methane gas sensor was fabricated based on electrocatalytic properties of the Pd/MWNT nanocomposites on indium tin oxide (ITO)glass substrates.A linear response for methane was obtained in the range of 0-16%(v/v)with a detection limit of 0.167%(v/ v)and R.S.D.of 4.1%.After 100 times sensing or stable stored more than 12 months in atmosphere,unconspicuous measurable decrease was observed.The response time was less than 60s at room temperature and ambient pressure.Some common potential interferents in samp...  相似文献   

18.
任雨雨  李源  吴晓勇  王金龙  张高科 《催化学报》2021,42(1):69-77,后插1
近年来,随着工业化和城镇化的飞速发展,作为一种典型的空气污染物,NOx已经造成严重的环境问题,甚至威胁到人类的身体健康.为了解决这个问题,科研工作者研发了许多NOx去除技术,其中光催化技术被认为是一种能有效地去除空气中NOx的技术.作为一种廉价、无毒、热稳定性强、能带结构合适的光催化材料,石墨相氮化碳(g-C3N4)能够有效的利用可见光,将NO光催化氧化为NO3^-.但是由于自身的光生载流子复合率较高,光谱响应范围较窄等缺点,g-C3N4不能有效的光催化去除空气中持续流动的低浓度NO,限制了其在光催化领域中的实际应用.因此,有必要合成出高催化活性、高光响应范围的S型复合光催化剂来克服以上光催化材料的不足.为此,我们利用超声辅助法制备了一系列的S型Sb2WO6/g-C3N4复合光催化剂,呈现出优异的光催化活性:与其纯组分相比,所制备的15-Sb2WO6/g-C3N4复合光催化剂在可见光下照射30 min,可去除68%以上的持续流动的NO(初始浓度400 ppb),且五次循环实验后,Sb2WO6/g-C3N4复合光催化剂仍然具备良好的光催化活性和稳定性.透射电子显微镜结果清楚地表明,Sb2WO6颗粒已成功地均匀地负载到g-C3N4纳米片表面.紫外可见漫反射光谱的结果表明,Sb2WO6和g-C3N4的复合可以有效地提高对可见光的吸收能力.与纯g-C3N4样品相比,复合样的吸收带边具有明显的红移.光致发光光谱结果表明,在Sb2WO6/g-C3N4复合半导体中,光生载流子的复合受到抑制.光电流与电阻抗分析可知,与纯Sb2WO6和g-C3N4相比较,在15-Sb2WO6/g-C3N4复合光催化剂中的光生载流子的迁移速率和分离效率较高.通过对样品的能带结构分析并已有参考文献,我们认为Sb2WO6和g-C3N4的接触边界形成了S型异质结,使光生载流子的转移速率更快,改善了光生电子-空穴对分离,而且增强可见光的利用效率,从而提高了光催化性能.自由基捕获实验结果证实,?O2^-主导了Sb2WO6/g-C3N4复合光催化剂去除NO反应,h^+也在一定程度上参与了光催化氧化NO的反应.通过原位红外光谱技术研究了Sb2WO6/g-C3N4光催化NO氧化的反应机理,研究发现,Sb2WO6/g-C3N4复合光催化剂光催化去除是氧诱导的反应.具体反应机理是在可见光的驱动下,光催化剂表面的光生电子会与被吸附的O2反应生成?O2^-,并与光生h^+一起,共同将低浓度的NO光催化氧化为亚硝酸盐或硝酸盐.该研究有助于深入研究光催化氧化NO机理,并为设计高效光催化剂用于光催化氧化ppb级NO提供了一种极具前景的策略.  相似文献   

19.
Two-dimensional graphdiyne (GDY) formed by sp and sp2 hybridized carbon has been found to be an efficient toxic gas sensing material by density functional theory (DFT). However, little experimental research concerning its gas sensing capability has been reported owing to the complex preparation process and harsh experimental conditions. Herein, porous GDY nanosheets are successfully synthesized through a facile solvothermal synthesis technique by using CuO microspheres (MSs) as both template and source of catalyst. The porous GDY nanosheets exhibit a broadband optical absorption, rendering it suitable for the light-driven optoelectronic gas sensing applications. The GDY-based gas sensor was demonstrated to have excellent reversible to NO2 behaviors at 25 °C for the first time. More importantly, higher response value and faster response-recovery time once exposed to NO2 gas molecules are achieved by the illumination of UV light. In this way, our work paves the way for the exploration of GDY-based gas detection experimentally.  相似文献   

20.
Gold ensembles for the trace level sensing of arsenic(III) in the presence of copper(II) are reported. The gold ensembles are fabricated using citrate capped gold nanoparticles which are chemically synthesised in an aqueous solution with an aliquot of this simply cast onto an economical and disposable screen printed electrode. After drying at room temperature, the gold ensembles are ready for use. The gold ensembles are explored towards the sensing of arsenic(III) in the presence of copper(II) using anodic stripping voltammetry where the corresponding stripping peaks are well resolved and using this protocol it is possible to readily detect 3 µg L?1 (3 ppb) with a detection limit of 0.4 µg L?1 (0.4 ppb). Proof‐of‐concept is also shown for the sensing of arsenic(III) in a canal water sample. Given the low cost of the sensor and ease of fabrication, the gold ensembles hold promise for the sensing of arsenic(III) in water samples where copper(II) may be present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号