首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bridged and unbridged N-heterocyclic carbene (NHC) ligands are metalated with [Ir/Rh(COD)2Cl]2 to give rhodium(I/III) and iridium(I) mono- and biscarbene substituted complexes. All complexes were characterized by spectroscopy, in addition [Ir(COD)(NHC)2][Cl,I] [COD = 1,5-cyclooctadiene, NHC =  1,3-dimethyl- or 1,3-dicyclohexylimidazolin-2-ylidene] (1, 4), and the biscarbene chelate complexes 12 [(η4-1,5-cyclooctadiene)(1,1′-di-n-butyl-3,3′-ethylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] and 14 [(η4-1,5-cyclooctadiene)(1,1′-dimethyl-3,3′-o-xylylene-diimidazolin-2,2′-diylidene)iridium(I) bromide] were characterized by single crystal X-ray analysis. The relative σ-donor/π-acceptor qualities of various NHC ligands were examined and classified in monosubstituted NHC-Rh and NHC-Ir dicarbonyl complexes by means of IR spectroscopy. For the first time, bis(carbene) substituted iridium complexes were used as catalysts in the synthesis of arylboronic acids starting from pinacolborane and arene derivatives.  相似文献   

2.
Rhodium and iridium complexes of a new ferrocene-derived bis(N-heterocyclic carbene) ligand, [M(cod){1,2-(MeNCHCHNCCH(2))(2)C(5)H(3)}Fe(C(5)H(5))]BF(4) (M = Rh, 8a; M = Ir, 8b; cod = 1,5-cyclooctadiene), were synthesized from the corresponding bis(imidazolium) salt 6. The molecular structure of 8a was determined by single-crystal X-ray diffraction. Complexes 8a and 8b smoothly react with CO with displacement of the chelating cod ligand to give the corresponding dicarbonyl derivatives 9a and 9b.  相似文献   

3.
The first iridium(I) complex containing siloxyl and N-heterocyclic carbene ligand such as [Ir(cod)(IMes)(OSiMe3)] (1) and [Ir(CO)2(IMes)(OSiMe3)] (3) have been synthesized and their structures solved by spectroscopy and X-ray methods as well as catalytic properties in selected hydrogenation reactions have been presented in comparison to their chloride analogues, i.e. [Ir(Cl)(cod)(IMes)] (2) and [Ir(Cl)(CO)2(IMes)] (4). The attempts at synthesis of iridium(I) complex with tert-butoxyl ligand has failed as leading instead to the iridium hydroxide complex [Ir(cod)(OH)(IMes)] (5) whose X-ray structure has also been solved. All complexes (1)-(5) show square planar geometry typical of the four-coordinated iridium complexes. Catalytic activity of complexes 1 and 2 was tested in transfer hydrogenation of acetophenone and hydrogenation of olefins.  相似文献   

4.
The novel sixteen-electron complex [Ir(Oq)(COD)] (Oq = 8-oxyquinolate; COD = 1,5-cyclooctadiene) adds monodentate phosphines, phosphites or activated olefins irreversibly to give pentacoordinate iridium(I) complexes of the type [Ir(Oq)(COD)L] (L = PPh3, P(OPh)3, maleic anhydride or tetracyano-ethylene). Reaction of [Ir(Oq)(COD)] with some diphosphines leads to substitution products of the general formula [Ir(Oq)(diphos)] (diphos = 1,2-bis(diphenylphosphino)ethane or cis-1,2-bis(diphenylphosphino)ethylene). Carbon monoxide displaces the COD group from the complexes giving either [Ir(Oq)(CO)2] or [Ir(Oq)(CO)L], and the latter undergo oxidative addition reactions with SnCl4, Me3SiCl, Me3SnCl, MeI, allylbromide, PhCOCl, MeCOCl, Cl2, Br2, TlCl3 and HCl leading to novel iridium(III) complexes.  相似文献   

5.
Purine-based carbenes can be attached to catalysis-related metals like rhodium and iridium through the standard method of in situ deprotonation of the respective azolium salts. Thus, 1,3,7,9-tetramethylxanthinium tetrafluoroborate is obtained by the reaction of trimethyloxonium tetrafluoroborate and caffeine. The salt and 7,9-dimethylhypoxanthinium iodide were used as a consecutive precursor to form rhodium (I) and iridium (I) carbene complexes of the type [M(L)(LCarbene)2]I and M(L)(LCarbene)(I) (M = Rh, Ir, LCarbene = 1,3,7,9-tetramethylxanthine-8-ylidene, 7,9-dimethylhypoxanthine-8-ylidene, L = η4-1,5-COD, CO) (COD = 1,5-cyclooctadiene). All compounds were characterized by 1H NMR, 13C NMR, mass spectrometry and/or elemental analysis.  相似文献   

6.
Journal of Structural Chemistry - A volatile iridium(I) complex [Ir(cod)Cp] (cod - 1,5-cyclooctadiene, Cp - cyclopentadienyl) is synthesized and characterized by IR and NMR spectroscopy. The...  相似文献   

7.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

8.
The activation studies for catalytic reduction of nitrobenzene to aniline by iridium(I) complexes, [Ir(COD)(amine)2]PF6 (COD=1,5-cyclooctadiene, amine =4-picoline, 3-picoline, 2-picoline, or pyridine) heterogenized on poly(4-vinylpyridine) in aqueous 2-ethoxyethanol are described. The aniline formation (mmol, based on CO2 formed after 9 h) followed the order: 4-picoline (0.068)>2-picoline (0.052)>3-picoline (0.046)≥pyridine (0.042) for 1.0×10−4 mol Ir/0.5 g of polymer, 0.26 mL of nitrobenzene, 10 mL of 2-ethoxyethanol/water, 8/2, v/v, P(CO)=0.9 atm, at 100°C.  相似文献   

9.
Volatile iridium(I) complexes [Ir(cod)Cpx] (Cpx = pentamethylcyclopentadienyl Cp*, ethylcyclopentadienyl CpEt, cod = 1,5-cyclooctadiene) are synthesized and characterized by IR and NMR spectroscopy. The [Ir(cod)Cp*] complex is a solid and the [Ir(cod)CpEt] complex is a liquid (SATP). The XRD method is used to determine the structure of the [Ir(cod)Cp*] complex: chemical formula C18H27Ir, space group P21/c, a = 8,4418(2) Å, b = 9,4764(3) Å, c = 19.2682(5) Å, β = 96.128(1) °, V = 1532.61(7) Å3, Z = 4, d calc = 1.888 g/cm3, μ = 8.697 mm–1. The cyclopentadienyl ligand is η5-type coordinated; 1,5-cyclooctadiene have a cis-cis conformation and is η4-type coordinated. The thermal properties of the complexes are studied by thermogravimetry.  相似文献   

10.
Alkoxylation and hydroxylation reactions of 1,5-cyclooctadiene (cod) in an iridium complex with alcohols and water promoted by the reduction of oxygen to hydrogen peroxide are described. The exo configuration of the OH/OR groups in the products agrees with nucleophilic attack at the external face of the olefin as the key step. The reactions also require the presence of a coordinating protic acid (such as picolinic acid (Hpic)) and involve the participation of a cationic diolefin iridium(III) complex, [Ir(cod)(pic)2]+, which has been isolated. Independently, this cation is also involved in easy alkoxy group exchange reactions, which are very unusual for organic ethers. DFT studies on the mechanism of olefin alkoxylation mediated by oxygen show a low-energy proton-coupled electron-transfer step connecting a superoxide–iridium(II) complex with hydroperoxide–iridium(III) intermediates, rather than peroxide complexes. Accordingly, a more complex reaction, with up to four different products, occurred upon reacting the diolefin–peroxide iridium(III) complex with Hpic. Moreover, such hydroperoxide intermediates are the origin of the regio- and stereoselectivity of the hydroxylation/alkoxylation reactions. If this protocol is applied to the diolefin–rhodium(I) complex [Rh(pic)(cod)], free alkyl ethers ORC8H11 (R=Me, Et) resulted, and the reaction is enantioselective if a chiral amino acid, such as l -proline, is used instead of Hpic.  相似文献   

11.
The preparation of a series of ferrocenyl nitrogen donor ligands including ferrocenylpyridines, ferrocenylphenylpyridines and 1,1-di(2-pyridyl)ferrocene is described. Coordination studies of the substituted pyridines (L) were carried out with platinum, palladium, rhodium and iridium. This resulted in the preparation of the following types of complexes: [MCl(CO)2(L)] and [M(cod)(L)2]ClO4 where M=Rh or Ir, cod=1,5-cyclooctadiene; [MCl2(L)2] where M=Pt or Pd. The X-ray crystal structure of trans-dichlorobis(3-ferrocenylpyridine)palladium was obtained. The complexes were screened for activity against two human cancer cell lines. At least two of the complexes displayed growth inhibition similar to that of the widely used chemotherapeutic agent, cisplatin.  相似文献   

12.
Sulfido ligands meet the coordination and electronic requirements for stabilizing compounds containing divergent metal centers in close proximity, as shown by the controlled syntheses of early–late bimetallic (ZrIr2 and ZrIr) and trimetallic complexes (ZrIrRh). The slow rotation of one 1,3-di-tert-butylcyclopentadienyl (Cptt) ring in 1 (structure shown) allows the observation of two rotamers at room temperature. cod=1,5-cyclooctadiene. [Cptt2Zr(μ3-S)2{Ir(CO)2}{Rh(cod)}] 1  相似文献   

13.
A series of [−2, −1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] ( 1 ), [Ir(bph)(2MeO-bpy)(acac)] ( 2 ), [Ir(bph)(2CF3-bpy)(acac)] ( 3 ), [Ir(bph)(bpy)(2tBu-acac)] ( 4 ) and [Ir(bph)(bpy)(CF3-acac)] ( 5 ), which using biphenyl as dianionic ligand [−2], acetylacetone (or its derivatives) as monoanionic ligand [−1], and 2,2′-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [−1, −1, −1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [−1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [−2, −1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.  相似文献   

14.
The reaction of gem-dithiol compounds R 2C(SH) 2 (R = Bn (benzyl), (i) Pr; R 2 = -(CH 2) 4-) with dinuclear rhodium or iridium complexes containing basic ligands such as [M(mu-OH)(cod)] 2 and [M(mu-OMe)(cod)] 2, or the mononuclear [M(acac)(cod)] (M = Rh, Ir, cod = 1,5-cyclooctadiene) in the presence of a external base, afforded the dinuclear complexes [M 2(mu-S 2CR 2)(cod) 2] ( 1- 4). The monodeprotonation of 1,1-dimercaptocyclopentane gave the mononuclear complex [Rh(HS 2Cptn)(cod)] ( 5) that is a precursor for the dinuclear compound [Rh 2(mu-S 2Cptn)(cod) 2] ( 6). Carbonylation of the diolefin compounds gave the complexes [Rh 2(mu-S 2CR 2)(CO) 4] ( 7- 9), which reacted with P-donor ligands to stereoselectively produce the trans isomer of the disubstituted complexes [Rh 2(mu-S 2CR 2)(CO) 2(PR' 3) 2] (R' = Ph, Cy (cyclohexyl)) ( 10- 13) and [Rh 2(mu-S 2CBn 2)(CO) 2{P(OR') 3} 2] (R' = Me, Ph) ( 14- 15). The substitution process in [Rh 2(mu-S 2CBn 2)(CO) 4] ( 7) by P(OMe) 3 has been studied by spectroscopic means and the full series of substituted complexes [Rh 2(mu-S 2CBn 2)(CO) 4- n {P(OR) 3} n ] ( n = 1, 4) has been identified in solution. The cis complex [Rh 2(mu-S 2CBn 2)(CO) 2(mu-dppb)] ( 16) was obtained by reaction of 7 with the diphosphine dppb (1,4-bis(diphenylphosphino)butane). The molecular structures of the diolefinic dinuclear complexes [Rh 2(mu-S 2CR 2)(cod) 2] (R = Bn ( 1), (i) Pr ( 2); R 2 = -(CH 2) 4- ( 6)) and that of the cis complex 16 have been studied by X-ray diffraction.  相似文献   

15.
Schiff bases derived from the condensation of β-diketones with N-methyl-S-methyldithiocarbazates yield cis dicarbonyl complexes Rh(CO)2 (Schiff) on reaction with [Rh(μ-Cl)(CO)2]2. Those derived from aromatic aldehydes form trans dicarbonyl complexes. These complexes with excess of triphenylphosphine give only Rh(CO)(PPh3)(Schiff). cis-1,5-cyclooctadiene (COD) reacts with cis dicarbonyl complexes to yield the carbonyl-free product Rh(COD)(Schiff); similar reactions have not been observed in the case of trans-dicarbonyl complexes. Oxidative addition of bromine to these complexes yields dibromo derivative in which the Schiff base acts as bidentate chelate. Rh(PPh3)2(Schiff) complexes have been obtained from the reaction of above Schiff bases with Rh(PPh3)3Cl. The structures of these new complexes have been determined based on IR and 1H NMR spectra.  相似文献   

16.
Two new iridium(III) complexes containing benzothiazol-2-yl carbazole derivative as a cyclometalated ligand (L) and picolinate (pic) or acetylacetonate (acac) as the ancillary ligand, Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(picolinate) [Ir(L)2(pic)] and Ir(III) bis(3-(benzothiazol-2-yl)-9-butyl-carbazole)(acetylacetonate) [Ir(L)2(acac)], were synthesized and characterized by elemental analysis, 1H NMR, FT-IR, and UV–Vis absorption spectra. Both the iridium(III) complexes emit intense green–yellow emissions, indicating that they are useful for the fabrication of organic light-emitting diodes.  相似文献   

17.
The ready availability of rare parent amido d8 complexes of the type [{M(μ‐NH2)(cod)}2] (M=Rh ( 1 ), Ir ( 2 ); cod=1,5‐cyclooctadiene) through the direct use of gaseous ammonia has allowed the study of their reactivity. Both complexes 1 and 2 exchanged the di‐olefines by carbon monoxide to give the dinuclear tetracarbonyl derivatives [{M(μ‐NH2)(CO)2}2] (M=Rh or Ir). The diiridium(I) complex 2 reacted with chloroalkanes such as CH2Cl2 or CHCl3, giving the diiridium(II) products [(Cl)(cod)Ir(μ‐NH2)2Ir(cod)(R)] (R=CH2Cl or CHCl2) as a result of a two‐center oxidative addition and concomitant metal–metal bond formation. However, reaction with ClCH2CH2Cl afforded the symmetrical adduct [{Ir(μ‐NH2)(Cl)(cod)}2] upon release of ethylene. We found that the rhodium complex 1 exchanged the di‐olefines stepwise upon addition of selected phosphanes (PPh3, PMePh2, PMe2Ph) without splitting of the amido bridges, allowing the detection of mixed COD/phosphane dinuclear complexes [(cod)Rh(μ‐NH2)2Rh(PR3)2], and finally the isolation of the respective tetraphosphanes [{Rh(μ‐NH2)(PR3)2}2]. On the other hand, the iridium complex 2 reacted with PMe2Ph by splitting the amido bridges and leading to the very rare terminal amido complex [Ir(cod)(NH2)(PMePh2)2]. This compound was found to be very reactive towards traces of water, giving the more stable terminal hydroxo complex [Ir(cod)(OH)(PMePh2)2]. The heterocyclic carbene IPr (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) also split the amido bridges in complexes 1 and 2 , allowing in the case of iridium to characterize in situ the terminal amido complex [Ir(cod)(IPr)(NH2)]. However, when rhodium was involved, the known hydroxo complex [Rh(cod)(IPr)(OH)] was isolated as final product. On the other hand, we tested complexes 1 and 2 as catalysts in the transfer hydrogenation of acetophenone with iPrOH without the use of any base or in the presence of Cs2CO3, finding that the iridium complex 2 is more active than the rhodium analogue 1 .  相似文献   

18.
An (alkene)peroxoiridium(III) complex, [Ir(L)(cod)(O(2))] [where LH = PhN=C(NMe(2))NHPh and cod = 1,5-cyclooctadiene], was identified as an intermediate in the reaction of the Ir(I) precursor [Ir(L)(cod)] with O(2) and characterized by spectroscopic methods. Decay of the intermediate and further reaction with 1,5-cyclooctadiene produced 4-cycloocten-1-one.  相似文献   

19.
The synthesis and characterization of a series of iridium(I) and iridium(III) complexes supported by a 3,5-bis(trifluoromethyl)-2-(2'-pyridyl)pyrrole (L(-)) ligand are reported. Compound [Ir(L)(COD)] (COD = 1,5-cyclooctadiene) demonstrates reversible binding of hydrogen to form a dihydride complex [Ir(L)(H)(2)(COD)] with no hydrogenation of COD.  相似文献   

20.
2 a and 2 b , [Ir(CI)(COD)(NHC)] (COD=1,5-cyclooctadiene), have been prepared via transmetallation from NHC−Ag complexes. [Rh(CI)(COD)(NHC)] ( 4 ) was prepared analogously. [Ir({κ-C,N-(NHC-acetamide−1H)}(COD)] ( 3 c ) has been synthesized via transmetallation from the deprotonated NHC−Ag complex. [IrCp*({κ-C,N-(NHC-acetamide−1H)}] ( 5 ) (Cp*=pentamethylcyclopentadienyl), has been obtained analogously. [Ir(CI)(CO)2(NHC)] ( 6 ) and [Ir({κ-C,N-(NHC-acetamide−1H)}(CO)2] ( 7 ) have been prepared by carbonylation of 2 b and 3 c , respectively. The catalytic activity of these complexes has been evaluated in the dehydrogenation of formic acid, under solventless conditions, in the presence of water as a cosolvent, and in a 5 : 2 HCOOH/Et3N mixture, with the best TOF values being obtained in the case of the latter. Stoichiometric experiments suggest COD hydrogenation as the preactivation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号