首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
3.
4.
5.
6.
7.
Experimental solubilities are reported for benzilic acid dissolved in ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 2-propanol, 2-butanol, 2-methyl-1-propanol, diethyl ether and methyl tert-butyl ether at 298.15?K. Results of these measurements reveal that the observed solubilities in the nine alcohol solvents fall within a fairly narrow mole fraction range of each other. Benzilic acid is also very soluble in the two ether solvents studied.  相似文献   

8.
9.
Experimental solubilities were measured for 20 crystalline organic solutes dissolved in propanenitrile and for 13 crystalline organic solutes dissolved in butanenitrile at 298.15 K. Infinite dilution activity coefficient data for solutes dissolved in propanenitrile and butanenitrile have been compiled from the published chemical and engineering literature and converted into gas-to-liquid partition coefficients and water-to-organic solvent partition coefficients through standard thermodynamic relationships. Abraham model correlations were developed for describing solute transfer into both propanenitrile and butanenitrile by combining our measured solubility data with the partition coefficients that we calculated from the published activity coefficient data. The derived Abraham model correlations were found to back-calculate the observed partition coefficients and molar solubility data to within 0.14 log units.  相似文献   

10.
11.
ABSTRACT

Experimental solubilities have been determined for anthracene, benzil, 2-chloroanthraquinone, 9-fluorenone, 2-hydroxybenzoic acid, 2-methoxybenzoic acid, 2-methylbenzoic acid, 3-methylbenzoic acid, phenothiazine, pyrene, and thioxanthen-9-one dissolved in benzyl alcohol at 298.15 K. The measured solubility data, combined with previously published activity coefficient and solubility data, are used to determine Abraham model correlations for solute transfer to benzyl alcohol from both water and from the gas phase. The derived Abraham model correlations were found to back-calculate the experimental partition coefficients and solubility ratios to within 0.14 log units (or less).  相似文献   

12.
13.
14.
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity dilution for 14 different aliphatic and cyclic hydrocarbons (alkanes, cycloalkanes, alkenes, alkynes), eight different aromatic compounds (benzene, alkylbenzenes, halobenzenes), five different chloroalkanes (dichloromethane, trichloromethane, 1-chlorobutane, 1,2-dichloropropane, isopropylbromide), tetrahydrofuran, butyl acetate, and acetonitrile dissolved in diethylene glycol at 298.15 K. Solubilities were also measured at 298.15 K for 31 crystalline nonelectrolyte organic solutes including several polycyclic aromatic hydrocarbons and substituted benzoic acid derivatives. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-diethylene glycol and water-to-diethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into diethylene glycol from the calculated partition coefficients and solubility ratios. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.14 log10 units (or less).  相似文献   

15.
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for 29 liquid organic solutes dissolved in triethylene glycol at 298.15 K. Solubilities were also determined at 298.15 K for 23 crystalline nonelectrolyte organic compounds in triethylene glycol based on spectroscopic absorbance measurements. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-triethylene glycol and water-to-triethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into triethylene glycol by combining our measured experimental values with published literature data. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.16 log10 units (or less).  相似文献   

16.
Experimental solubilities are reported for 3,4-dichlorobenzoic acid dissolved in methyl butyrate, and in 16 alcohol, 5 alkyl acetate, 5 alkoxyalcohol and 6 ether solvents. Solubilities were also measured in nine binary aqueous–ethanol solvent mixtures at 298.15?K. The measured solubility data were correlated with the Abraham solvation parameter model. Mathematical expressions based on the Abraham model predicted the observed molar solubilities to within 0.12 log units.  相似文献   

17.
18.
Extended Hildebrand solubility approach (EHSA) was applied in this research to analyse the equilibrium solubility of sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Reported experimental solubilities and some fusion properties of these drugs were used for EHSA calculations. A good predictive character of EHSA (with mean deviations lower than 4.0%) was found by using regular polynomials in order five when correlating the interaction parameter (W) and the Hildebrand solubility parameter of solvent mixtures free of drug (δ1+2). Nevertheless, the predictive character of EHSA was almost the same as obtained when logarithmic drug solubilities (log x3) were correlated with δ1+2 by using a fifth-degree regular polynomial.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号