首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ester derivatives of 5-aminolevulinic acid (ALA-esters) have been proposed as alternative drugs for ALA in photodynamic therapy. After topical application of creams containing ALA, ALA methylester (ALA-Me), ALA hexylester (ALA-Hex) and ALA octylester (ALA-Oct) on mouse skin, typical fluorescence excitation and emission spectra of protoporphyrin IX (PpIX) were recorded, exhibiting a similar spectral shape for all the drugs in the range of concentrations (0.5-20%) studied. The accumulation kinetics of PpIX followed nearly a similar profile for all the drug formulations. The fluorescence of PpIX peaked at around 6-12 h of continuous cream application. Nevertheless, some differences in pharmacokinetics were noticed. For ALA cream, the highest PpIX fluorescence was achieved using 20% of ALA in an ointment. Conversely, 10% of ALA-Me and ALA-Hex, but not of ALA-Oct, in the cream was more efficient (P < 0.05) than was 20%. The cream becomes rather fluid when 20% of any of these ALA-esters is used in ointment, whereas 10% and lower concentrations of ALA-esters do not significantly increase fluidity of the cream. The dependence of PpIX accumulation on the concentration of ALA and ALA-ester in the applied cream followed (P < 0.002) kinetics as described by a mathematical model based on the Michaelis-Menten equation for enzymatic processes. Under the present conditions, the PpIX amount in the skin increased by around 50% by the application of ALA-Me, ALA-Hex or ALA-Oct for 4-12 h as compared with ALA for the same period. Observations of the mice under exposure to blue light showed that after 8-24 h of continuous application of ALA, the whole mouse was fluorescent, whereas in the case of ALA-Me, ALA-Hex and ALA-Oct the fluorescence of PpIX was located only at the area of initial cream application. The amount of the active compound in the applied cream necessary to induce 90% of the maximal amount of PpIX was determined for normal mouse skin. Optimal PpIX fluorescence can be attained using around 5% ALA, 10% ALA-Me and 5% ALA-Hex creams during short application times (2-4 h). Topical application of ALA-Oct may not gain optimal PpIX accumulation for short applications (<5 h). For long application times (8-12 h), it seems that around 1% ALA, 4% ALA-Me, 6% ALA-Hex and 16% ALA-Oct can give optimal PpIX fluorescence. But for long application times and high concentrations, systemic effect of ALA applied topically on relatively large areas should be considered.  相似文献   

2.
The temperature dependence of the uptake phase of 5-aminolevulinic acid (ALA) and the following production phase of protoporphyrin IX (PpIX) in normal mouse skin was investigated. A cream containing 20% ALA was topically applied on the skin for 10 min. The amount of ALA-induced PpIX was evaluated by measuring the fluorescence of PpIX from the treated skin. No measurable amount of PpIX was found in the skin immediately after 10 min application of ALA. The penetration of ALA into the skin was almost temperature independent while the following production of PpIX was found to be a strongly temperature-dependent process. Practically no PpIX was formed in the skin as long as skin temperature was kept low (12 degrees C).  相似文献   

3.
Treatments currently employed for plantar warts are often painful (electrosurgery, cryotherapy) and not always effective (keratolytic agents). In this paper we investigate the effect of photodynamic therapy (PDT) with topical delta-aminolaevulinic acid (ALA) on plantar warts. In order to remove the superficial hyperkeratotic layer of the warts an ointment containing 10% urea and 10% salicylic acid was applied for 7 days. After gentle curettage, a cream containing 20% ALA was applied under an occlusive dressing for 5 h on 64 warts, while 57 warts (controls) received only the vehicle. Both the ALA-treated warts and the controls were irradiated using a visible light lamp (with a range of 400-700 nm, peaking at 630 nm). The light dose was 50 J/cm(2). Patients were followed-up for 22 months. Two months after the last irradiation session 48 (75.0%) out of 64 ALA-PDT treated warts had resolved. By contrast only 13 (22.8%) of the 57 control warts had done so. During the treatment a few patients complained of a mild burning sensation. The absorption of ALA by the verrucous tissue was demonstrated by in vivo fluorescence spectroscopy. This study shows that topical ALA-PDT can be an alternative treatment for plantar warts. Further studies will be necessary in order to optimize the concentration of ALA and duration of treatment.  相似文献   

4.
Topical application of 5-aminolevulinic acid (ALA) for protoporphyrin IX (PpIX)-based photodynamic therapy of skin cancer is generally considered not to induce systemic side effects because PpIX is supposed to be formed locally. However, earlier studies with topically applied ALA have revealed that in mice PpIX is not only produced in the application area but also in other organs including skin outside the application area, whereas esterified ALA does not. From these results, it was concluded that it is not redistribution of circulating PpIX that causes the fluorescence distant from the ALA application site, but rather, local PpIX production induced by circulating ALA. In the present study we investigate the effects of the ALA concentration in the cream, the application time, the presence of a penetration enhancer, the presence of the stratum corneum and esterification of ALA on the PpIX production in nude mouse skin outside the area where ALA is applied. For this purpose, ALA and ALA hexyl ester (ALAHE) were applied to one flank, and the PpIX fluorescence was measured in the contralateral flank. During a 24 h application of ALA, PpIX was produced in the contralateral flank. No PpIX could be detected in the contralateral flank after ALA application times ranging from 1 to 60 min. Tape-stripping the skin prior to short-term ALA application, but not the addition of a penetration enhancer, resulted in PpIX production in the contralateral flank. When ALAHE was applied, no PpIX fluorescence was measured in the contralateral flank under any application condition. The results suggest that the systemic component of PpIX production outside the ALA application area plays a minor or no role in relevant clinical situations, when the duration of ALA (ester) application is relatively short and a penetration enhancer is possibly added.  相似文献   

5.
The knowledge of the exact time course of a photosensitizer in tumour and surrounding host tissue is fundamental for effective photodynamic therapy (PDT) and fluorescence-based diagnosis. In this study the time course of porphyrin fluorescence following topical application of 5-aminolaevulinic acid (ALA) using different formulations, concentrations and incubation times has been measured in amelanotic melanomas (A-Mel-3) (n = 54) grown in transparent dorsal skinfold chambers of Syrian golden hamsters and in human basal cell carcinomas (BCCs) (n = 40) in vivo. To simulate the accumulation of ALA-induced protoporphyrin IX (Pp IX), a three-compartment model has been developed and rate constants have been determined. The kinetics of both the A-Mel-3 tumours and the BCCs show a significantly higher fluorescence intensity in tumour as compared to normal surrounding host tissue. Maximal fluorescence intensity in A-Mel-3 tumours as a percentage of the reference standard used occurs 150 min post incubation (p.i.) using a 1, 3 or 10% (vol.) ALA solution buffered to pH 7.4 and 1 h incubation time. After a 4 h incubation time maximal fluorescence intensity in tumour is measured shortly p.i. A concentration of 10% ALA does not increase the fluorescence intensity as compared to 3% ALA following 4 h incubation, but either 3 or 10% ALA yields a significantly higher fluorescence after 4 h incubation time as compared to 1 h. The fluorescence intensity following an 8 h incubation reaches its maximum directly p.i. for all concentrations and then decreases exponentially. The fluorescence intensity in the surrounding host tissue shows no statistically significant difference regarding concentration or incubation time. At least during the first hour p.i., the fluorescence intensity measured in the surrounding tissue is lower as compared to that in the tumour in all groups. 24 h after topical application hardly any fluorescence is detectable in tumour or surrounding host tissue in all experimental groups. Incubating human BCCs with a 20% ALA cream (water-in-oil emulsion) or a 20% ALA gel (containing 40% dimethyl sulfoxide) for approximately 2 h yields a similar fluorescence intensity directly after incubation for either cream or gel. However, while yielding a maximum 120 min p.i. with cream, the fluorescence intensity increases for a longer time (about 2-3 h p.i.) and up to higher values using the gel formulation. In surrounding normal skin, cream as well as gel formulation yields a similar fluorescence intensity directly after incubation. Afterwards the fluorescence intensity decreases slowly using the cream whereas a further increase of the fluorescence intensity is measured in the normal skin with a maximum 240 min p.i. using the gel formulation. The results of the proposed three-compartment model indicate that the observed selectivity of accumulated porphyrins following topical application of ALA is mainly governed by an increased ALA penetration of the stratum corneum of the skin, an accelerated ALA uptake into the cell and a higher porphyrin formation in tumour as compared to normal skin tissue, but not by a reduced ferrocheletase activity.  相似文献   

6.
Peroxidizability of fatty acids in the air is roughly proportional to the number of double bonds, but in vivo peroxidation proceeds in a more complex manner. Here, we compared the effects of dietary and topically applied oils enriched with linoleic acid (LA, 18:2n-6) or alpha-linolenic acid (ALA, 18:3n-3) on UV-induced skin injury in a strain of hairless mice. The UVB-induced erythema score was significantly lower in mice with topically applied creams containing LA and ALA than in mice with the basal cream; no significant increase in the score was detected in the ALA group compared with the LA group. However, dietary ALA inhibited the increase in erythema score after UVB irradiation compared with LA. The peroxidizability index of the skin total lipids was significantly higher, but UVB-induced prostaglandin E2 (PGE2) production was significantly lower in the group fed an ALA-rich diet compared with the group fed an LA-rich diet. The levels of thiobarbituric acid-reactive substances, estimated in the presence of butylated hydroxytoluene in the assay mixture, were not affected by UVB treatment or by the dietary fatty acids, but the severity of the skin lesion was associated with PGE2 levels. These results indicate that the type of fatty acids, n-6 or n-3, is critical for the suppression of UVB-induced skin lesion when the skin fatty acids are modified by dietary manipulation. Anti-inflammatory activity of dietary flaxseed oil with relatively high ALA and low LA contents was demonstrated in UVB-irradiated hairless mice.  相似文献   

7.
Photodynamic therapy with 5-aminolevulinic acid (ALA) derived protoporphyrin IX (PpIX) as photosensitizer is a promising treatment for basal cell carcinomas. Until now ALA has been administered topically as an oil-in-water cream in most investigations. The disadvantage of this administration route is insuffici?nt penetration in deeper, nodular tumours. Therefore we investigated intracutaneous injection of ALA as an alternative administration route. ALA was administered in 6-fold in the normal skin of three 6-week-old female Dutch pigs by intracutaneous injection of an aqueous solution of ALA (pH 5.0) in volumes of 0.1-0.5 ml and concentrations of 0.5-2% and by topical administration of a 20% ALA cream. During 8 h fluorescence of ALA derived PpIX was measured under 405 nm excitation. For the injection the measured fluorescence was shown to be dose dependent. All injected doses of 3 mg ALA or more lead to a faster initial increase rate of PpIX synthesis and significantly greater fluorescence than that measured after topical administration of ALA. Irradiation (60 Jcm(-2) for 10 min) of the spots was performed at 3.5 h after ALA administration. After 48 and 96 h visual damage scores were evaluated and biopsies were taken for histopathological examination. After injection of 2 mg ALA or more the PDT damage after illumination was shown to be significantly greater than after topical application of 20% ALA. An injected dose of 10 mg ALA (0.5 ml of a 2% solution) resulted in significantly more tissue damage after illumination than all other injected doses.  相似文献   

8.
In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis.  相似文献   

9.
This study was designed to evaluate what application time of delta-5-aminolaevulinic acid (ALA) results in highest contrast between tumour and normal skin, in the interval 1-4 h, when using photodynamic diagnosis (PDD) of basal cell carcinomas (BCC) located on the face. Moreover, a value of the demarcation limit has been derived based on the fluorescence variation in normal skin adjacent to the tumour. Forty patients were included in the study, randomly allocated to four different groups with varying ALA application time in the range 1-4 h. The contrast, defined as the ratio between the fluorescence intensity in ALA-treated tumour tissue and normal skin, was calculated for each patient, and the mean values in each group were evaluated as a function of ALA application time. In addition, the fluorescence intensity variation in ALA-treated normal skin adjacent to the tumour was assessed. The results from this study show a peak of the mean contrast values after 3 h ALA application, but due to large interpatient variation, the mean contrast did not differ significantly in the interval 2-4 h. After 2 h ALA application, the fluorescence intensity variation in the normal ALA-treated skin was found to be at a maximum, which suggests that 2 h ALA application is not preferable when using PDD. Based on data of the fluorescence variation in ALA-treated normal skin after 3 and 4 h ALA application, a tolerance interval was calculated implying that values above 1.4 times the mean normal fluorescence indicate an abnormal condition. This tolerance limit agrees well with results obtained in a former study.  相似文献   

10.
Exposure to ultraviolet (UV) radiation may induce erythema, DNA damage and suppression of immune responses. Melanin pigmentation offers protection against the first two of these effects, but immunosuppression seems to occur irrespective of the subject's pigmentation. Cis-urocanic acid (cis-UCA), produced by isomerization of trans-UCA in the stratum corneum on UV exposure, initiates some of the immunomodulatory effects of UV radiation. In the present study the relationship between skin pigmentation and UCA isomerization has been examined in 28 healthy individuals of skin types I-IV. Pigmentation is measured in five areas of not recently exposed back skin before irradiation with 0, 0.45, 0.9, 1.8 and 3.6 standard erythema dose (SED) of filtered broadband UV-B (1 SED = 10 mJ cm-2 at 298 nm). The concentration of UCA isomers is measured immediately after the irradiation. With 3.6 SED, the relative production of cis-UCA is close to the maximum obtainable, irrespective of skin type. A significant negative correlation is found between pigmentation and relative production of cis-UCA at 0.45 and 1.8 SED, and between pigmentation and absolute production of cis-UCA at 0.45 SED. At doses of 0.45 and 0.9 SED the relative and absolute production of cis-UCA are higher in the group with skin types I and II when compared with the group with skin types III and IV. The higher isomerization in the lightly pigmented subjects than in the more pigmented ones may indicate that people with fair skin are at a relatively higher risk of immunosuppression when exposed to low doses of UV radiation.  相似文献   

11.
Synthesis of delta-aminolevulinic acid (ALA) derivatives is a promising way to improve the therapeutic properties of ALA, particularly cell uptake or homogeneity of protoporphyrin IX (PpIX) synthesis. The fluorescence emission kinetics and phototoxic properties of ALA-n-pentyl ester (E1) and R,S-ALA-2-(hydroxymethyl) tetrahydrofuranyl ester (E2) were compared with those of ALA and assessed on C6 glioma cells. ALA (100 micrograms/mL), E1 and E2 (10 micrograms/mL) induced similar PpIX-fluorescence kinetics (maximum between 5 and 7 h incubation), fluorescence being limited to the cytoplasm. The 50% lethal dose occurred after 6 h with 45, 4 and 8 micrograms/mL of ALA, E1 and E2, respectively. ALA, E1 and E2 induced no dark toxicity when drugs were removed after 5 min of incubation. However, light (25 J/cm2) applied 6 h after 5 min incubation with 168 micrograms/mL of each compound induced 85% survival with ALA, 27% with E1 and 41% with E2. Increasing the incubation time with ALA, E1 and E2 before washing increased the phototoxicity, but E1 and E2 remained more efficient than ALA, regardless of incubation time. ALA-esters were more efficient than ALA in inducing phototoxicity after short incubation times, probably through an increase of the amount of PpIX synthesized by C6 cells.  相似文献   

12.
Abstract— The purpose of the present study was to determine the kinetics and the fluence rate dependency of the photo-bleaching of protoporphyrin IX (PpIX) in normal skin of Balb/c nude mice after systemic and topical application of 5-aminolevulinic acid (ALA). ALA was administered systemically (200 mg/kg body weight, i.p.) and topically (20% w/w ALA cream) to the mice. Fluences of up to 40 J/cm2 were delivered by a dye laser (636 nm) at fluence rates of 37.5, 75, 150, 300 and 500 mW/cm2. The photo-bleaching rate was constant within this range of fluence rates. This result suggests that there is no oxygen effect for PpIX photobleaching in this region for the skin of Balb/c nude mice. During light exposure the fluorescence decay followed neither first- nor second-order kinetics. The decay rate was slightly faster after systemic application than after topical application of ALA, but did not depend on the time (1–8 h) between application and analysis.  相似文献   

13.
The increased popularity of commercially available three-dimensional human skin equivalents in recent years has allowed for assessment of melanogenesis modulated by compounds topically applied to the skin or directly incorporated from the medium. These skin equivalents provide a suitable model for elucidating the mechanisms of action of various factors that modulate skin pigmentation or other properties of the skin. As such, researchers need to objectively quantify cutaneous responses at the macroscopic level. A simple method to standardize macrophotography images is reported that can quantify cutaneous responses in human skin equivalents of Asian, Black or African American, and Caucasian or White racial/ethnic origin. Macrophotographs are analyzed using the Commission Internationale de l'Eclairage L * a * b * color space system in combination with a personal computer and image editing software. Pigmentation changes monitored over a 9 day period showed a high correlation with melanin content evaluated in Fontana–Masson-stained sections. These results indicate the feasibility of using a macrophotography setup in a sterile tissue culture environment to objectively assess in vitro cutaneous responses in human skin equivalents. This serves as an adjunct tool to biochemical and morphological methods to effectively quantify changes in pigmentation over time.  相似文献   

14.
In clinical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) of skin tumors it is desirable to develop vehicles that minimize the penetration of ALA through normal stratum corneum and maximize it through the compromised stratum corneum of the tumors to improve tumor selectivity. We have designed a bioadhesive patch, which may be able to achieve this aim. It induces levels of protoporphyrin IX (PpIX) in skin overlying tumors similar to those induced by the proprietary cream (Porphin) but at the same time induces less PpIX to form in normal skin and at distant sites. The mechanisms of action of the patch, as compared with that of the cream, were studied by means of Cuprophan barriers that mimic compromised tumor stratum corneum and in a mouse model with transplanted tumors.  相似文献   

15.
The skin of nude mice was exposed to erythemogenic doses of UV radiation, which resulted in erythema with edema. An ointment containing 5-aminolevulinic acid (ALA) was topically applied on mouse and human skin. Differences in the kinetics of protoporphyrin accumulation were investigated in normal and UV-exposed skin. At 24 and 48 h after UV exposure, skin produced significantly less protoporphyrin IX (PpIX) than skin unexposed to UV. Human skin on body sites frequently exposed to solar radiation (the lower arm) also produced less PpIX than skin exposed more rarely to the sun (the upper arm). It is concluded that UV radiation introduces persisting changes in the skin, relevant to its capability of producing PpIX from ALA. The observed differences in ALA-induced PpIX fluorescence may be the result of altered penetration of ALA through the stratum corneum or altered metabolizing ability of normal and UV-exposed skin (or both).  相似文献   

16.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

17.
Photodynamic therapy (PDT) based on the use of photoactivable porphyrins, such as protoporphyrin IX (PpIX), induced by the topical application of amino-levulinic acid (ALA) or its derivatives, ALA methyl-ester (m-ALA), is a treatment for superficial basal cell carcinoma (BCC), with complete response rates of over 80%. However, in the case of deep, nodular-ulcerative lesions, the complete response rates are lower, possibly related to a lower bioavailability of PpIX. Previous in vitro skin permeation studies demonstrated an increased penetration of amino-levulinic acid hexyl-ester (h-ALA) over ALA. In this study, we tested the validity of this approach in vivo on human BCCs. An emulsion containing 20% ALA (w/w) and preparations of h-ALA at different concentrations were applied topically to the normal skin of Caucasian volunteers to compare the PpIX fluorescence intensities with an optical fiber-based spectrofluorometer. In addition, the PpIX depth distribution and fluorescence intensity in 26 BCCs were investigated by fluorescence microscopy following topical application of 20% ALA and 1% h-ALA. We found that, for application times up to 24h, h-ALA is identical to ALA as a PpIX precursor with respect to PpIX fluorescence intensity, depth of penetration, and distribution in basal cell carcinoma, but has the added advantage that much smaller h-ALA concentrations can be used (up to a factor 13). We observed a non-homogenous distribution in BCCs with both precursors, independent of the histological type and depth of invasion in the dermis.  相似文献   

18.
Our novel approach was to compare the pharmacokinetics of 5-aminolevulinic acid (ALA), ALA-n-butyl and ALA-n-hexylester induced protoporphyrin IX (PpIX), together with the phototoxicity after photodynamic therapy (PDT) in human skin in vivo, using iontophoresis as a dose-control system. A series of four increasing doses of each compound was iontophoresed into healthy skin of 10 volunteers. The kinetics of PpIX metabolism (n = 4) and the response to PDT (n = 6) performed 5 h after iontophoresis, were assessed by surface PpIX fluorescence and post-irradiation erythema. Whilst ALA-induced PpIX peaked at 7.5 h, highest PpIX fluorescence induced by ALA-n-hexylester was observed at 3-6 h and no clear peak was seen with ALA-n-butylester. With ALA-n-hexylester, more PpIX was formed after 3 (P < 0.05) and 4.5 h, than with ALA or ALA-n-butylester. All compounds showed a linear correlation between logarithm of dose and PpIX fluorescence/phototoxicity at 5 h, with R-values ranging from 0.87 to 1. In addition, the ALA-n-hexylester showed the tendency to cause greater erythema than ALA and ALA-n-butylester. Fluorescence microscopy (n = 2) showed similar PpIX distributions and penetration depths for the three drugs, although both ALA esters led to a more homogeneous PpIX localization. Hence, ALA-n-hexylester appears to have slightly more favorable characteristics for PDT than ALA or ALA-n-butylester.  相似文献   

19.
Abstract Penetration potency of δ-aminolevulinic acid (ALA) was studied by examining fluorescence of endogenous protoporphyrin IX in different histological types of basal cell carcinoma. Ten basal cell carcinomas were coated with an ointment containing 10% ALA prior to excision; five served as controls. Tumors were excised either 4 h or 12 h after application of ALA using a modified Mohs’micrographic surgical technique. Horizontal sections were cut from deep dermis to tumor surface and examined under a fluorescence microscope. After 4 h of application, only skin appendages demonstrated fluorescence typical of protoporphyrin IX. After 12 h, fluorescence was detectable in tumor cells in deep dermis. The five controls revealed no fluorescence at any site. These results may confirm the high penetration potential of topically applied ALA and its usefulness in photodynamic therapy. For tumors penetrating to deep dermis, an application time of more than 4 h seems necessary, at least when hydrophilic solvents for ALA are used.  相似文献   

20.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号