首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the lead compounds 1 and 2, a series of novel BACE1 inhibitors were designed and synthesized, among which compound 9h exhibited a 60 fold improvement in potency over the lead compound 1. This represents a good lead for the discovery of more promising BACE1 inhibitors for the potential treatment of AD. The result also showed that the prop-2-yn-1-yloxy is a suitable fragment for modification of cyclic acylguanidine BACE1 inhibitors.  相似文献   

2.
By taking compound 1 as a lead, a series of 5-cyclopropyl substituted cyclic acylguanidine compounds were designed and synthesized as BACE1 inhibitors, compound 4d exhibited 84-fold improved inhibition efficiency than lead compound 1. The diphenyl fragment at the P3 position and the substituents at the second phenyl ring were essential for the compounds to achieve improved inhibition efficiency. This SAR studies provides new insights into the design and synthesis of more promising BACE1 inhibitors for the potential treatment of AD.  相似文献   

3.
以KMI-008为先导化合物,4-羟基或氨基取代的脯氨酸模拟其Pns,设计并合成了19条肽序列,用时间分辨荧光法测定目标肽体外对BACE1的抑制作用. 所合成化合物对BACE1有一定的抑制作用,其中两个化合物(LK-MX-41、LK-MX-42)与先导化合物活性相近,其核心结构由L-Phe-D-Pro组成,可以模拟BACE1的催化中心与底物相互作用的过渡态;含有该结构的肽序列,有可能成为研究肽类BACE1抑制剂的另一途径. 应用Autodock 4将所合成化合物与BACE1进行对接,结合体外活性测试结果对构效关系进行了初步探讨. 先导化合物及目标肽用固相法合成,经RP-HPLC测定纯度、ESI-MS确定相对分子量.  相似文献   

4.
5.
A new triterpenic compound named pistagremic acid (PA) was once again isolated from Pistaciaintegerrima. The β-secretase inhibition study was carried out. Compound PA was found significantly active against β-secretase enzyme (BACE1) with IC50 value of 350 ± 2 nM in comparison to the standard inhibitors [Asn670, Sta671, Val672]-amyloid-β/A4 precursor protein 770 fragment 662–675 (IC50 = 290.71 ± 1 nM). The selectivity of this compound was also evaluated against the acetylcholinesterase and butyrylcholinesterase enzymes. Interestingly compound PA was found to be inactive against them and showed selectivity towards β-secretase enzyme (BACE1).  相似文献   

6.
In this molecular docking study, the protonation states of the catalytic Asp dyad of the beta-secretase (BACE1) enzyme in the presence of eight chemically diverse inhibitors have been predicted. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely considered as a promising therapeutic target. All the inhibitors were redocked into their corresponding X-ray structures using a combination of eight different protonation states of the Asp dyad for each inhibitor. Five inhibitors were primarily found to favor two different monoprotonated states, and the remaining three favor a dideprotonated state. In addition, five of them exhibited secondary preference for a diprotonated state. These results show that the knowledge of a single protonation state of the Asp dyad is not sufficient to search for the novel inhibitors of BACE1 and the most plausible state for each inhibitor must be determined prior to conducting in-silico screening.  相似文献   

7.
Drug discovery is a multifaceted endeavor encompassing as its core element the generation of structure‐activity relationship (SAR) data by repeated chemical synthesis and biological testing of tailored molecules. Herein, we report on the development of a flow‐based biochemical assay and its seamless integration into a fully automated system comprising flow chemical synthesis, purification and in‐line quantification of compound concentration. This novel synthesis‐screening platform enables to obtain SAR data on b‐secretase (BACE1) inhibitors at an unprecedented cycle time of only 1 h instead of several days. Full integration and automation of industrial processes have always led to productivity gains and cost reductions, and this work demonstrates how applying these concepts to SAR generation may lead to a more efficient drug discovery process.  相似文献   

8.
Efforts to discover new drugs for Alzheimer's disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloaddition reactions. Three compounds among the sixteen designed compounds exerted multifunctional activities including β-secretase inhibitory action, anti-amyloid aggregation, metal chelating and antioxidant effects at micromolar levels. The neuroprotective effects of the multifunctional compounds 6h, 12c and 12h on Aβ???? induced neuronal cell death at 1 μM were significantly greater than those of the potent single target compound, BACE1 inhibitor IV and were comparable to curcumin. The observed synergistic effect resulting from the reduction of the Aβ???? neurotoxicity cascade substantiates the validity of our multifunctional strategy in drug discovery for Alzheimer's disease.  相似文献   

9.
Previous studies have reported that Hedyotis diffusa Willdenow extract shows various biological activities on cerebropathia, such as neuroprotection and short-term memory enhancement. However, there has been a lack of studies on the inhibitory activity on neurodegenerative diseases such as Alzheimer’s disease (AD) through enzyme assays of H. diffusa. Therefore, H. diffusa extract and fractions were evaluated for their inhibitory effects through assays of enzymes related to AD, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and on the formation of advanced glycation end-product (AGE). In this study, ten bioactive compounds, including nine iridoid glycosides 1–9 and one flavonol glycoside 10, were isolated from the ethyl acetate and n-butanol fractions of H. diffusa using a bioassay-guided approach. Compound 10 was the strongest inhibitor of cholinesterase, BACE1, and the formation of AGEs of all isolated compounds, while compound 5 had the lowest inhibitory activity. Compounds 3, 6, and 9 exhibited better inhibitory activity than other compounds on AChE, and two pairs of diastereomeric iridoid glycoside structures (compounds 4, 8, and 6, 7) showed higher inhibitory activity than others on BChE. In the BACE1 inhibitory assay, compounds 1–3 were good inhibitors, and compound 10 showed higher inhibitory activity than quercetin, the positive control. Moreover, compounds 1 and 3 were stronger inhibitors of the formation of AGE than aminoguanidine (AMG), the positive control. In conclusion, this study is significant since it demonstrated that the potential inhibitory activity of H. diffusa on enzymes related to AD and showed the potential use for further study as a natural medicine for AD treatment on the basis of the bioactive components isolated from H. diffusa.  相似文献   

10.
高庆平  詹新雨  孔佳娣  齐云国  杨凌  吴倩 《化学通报》2020,83(11):1038-1043
对BACE1抑制剂的研究与开发已成为目前治疗阿尔兹海默症的主要研究方向之一。本文选取105个氨基乙内酰脲类BACE1抑制剂作为研究对象,借助比较分子相似性指数(Comparative Molecular Similarity Index, CoMSIA)和分子对接方法,建立定量构效关系预测模型,研究影响化合物抑制活性的特征结构信息,揭示该类抑制剂与靶标之间的作用模式。结果表明,模型(Q2=0.45, R2ncv=0.87, R2pre=0.85)具有较强的预测能力,抑制剂主要占据了靶标的S3、S1和S2"位点,其主要作用力类型为氢键力。实验所得模型和信息可为日后研究开发新型高效的BACE1抑制剂提供一定的理论指导,节省研究时间与费用。  相似文献   

11.
Heparan sulfates (HS) are a class of sulfated polysaccharides that function as dynamic biological regulators of the functions of diverse proteins. The structural basis of these interactions, however, remains elusive, and chemical synthesis of defined structures represents a challenging but powerful approach for unravelling the structure–activity relationships of their complex sulfation patterns. HS has been shown to function as an inhibitor of the β‐site cleaving enzyme β‐secretase (BACE1), a protease responsible for generating the toxic Aβ peptides that accumulate in Alzheimer’s disease (AD), with 6‐O‐sulfation identified as a key requirement. Here, we demonstrate a novel generic synthetic approach to HS oligosaccharides applied to production of a library of 16 hexa‐ to dodecasaccharides targeted at BACE1 inhibition. Screening of this library provided new insights into structure–activity relationships for optimal BACE1 inhibition, and yielded a number of potent non‐anticoagulant BACE1 inhibitors with potential for development as leads for treatment of AD through lowering of Aβ peptide levels.  相似文献   

12.
Lupane-type triterpenoids have shown a potential effect against neurodegenerative disorders. Alzheimer’s disease, one of the common neurodegenerative disease, is evident by the accumulation of amyloid-beta (Aβ) plaque in the extracellular regions of the brain. β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme for the Aβ formation viathe cleavage of amyloid precursor protein (APP). Therefore, to find the potent BACE1 inhibitors and furthermore to explore the role of the functional group responsible for the strong BACE1 inhibitory activity, we synthesized a series of triterpenoids with lupane skeleton starting from the natural compounds calenduladiol and lupeol. Compound 1 revealed a potent competitive BACE1 inhibitory activity (IC50 = 16.77 ± 1.16 μM; Ki = 19.38). Furthermore, the molecular docking simulation revealed the importance of Tyr198 residue along with the other hydrophobic interactions for the strong affinity of 1‒BACE1 complex. To sum up, our results demonstrated the importance of carbonyl moiety at 3 and 16 position of lupane-type triterpenoid over the hydroxyl group at the same position.  相似文献   

13.
In this study, we described quantitatively the interactions between two new amino‐2H‐imidazole inhibitors ((R)‐1t and (S)‐1m) and BACE1 using a hybrid quantum mechanics‐molecular mechanical (QM/MM) method together with a quantum theory of atoms In Molecules (QTAIM) analysis. Our computational calculations revealed that the binding affinity of these compounds is mostly related to the amino‐2H‐imidazole core, which interact tightly with the aspartate dyad of the active site. The interactions were stronger when the inhibitors presented a bulky substituent with a hydrogen bond acceptor motif pointing toward Trp76, such as the 3,5‐dimethyl‐4‐methoxyphenyl group of compound (S)‐1m. Furthermore, the QTAIM analysis revealed that many hydrophobic interactions complement cooperatively the hydrogen bond which is not present when compound (R)‐1t is bound to the enzyme. The combined QM/MM‐QTAIM analysis allows identifying the interactions that account for the activity difference between compounds, even at a nanomolar range.  相似文献   

14.
A small series of nitro group-bearing enamides was designed, synthesized (NEA1–NEA5), and evaluated for their inhibitory profiles of monoamine oxidases (MAOs) and β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1). Compounds NEA3 and NEA1 exhibited a more potent MAO-B inhibition (IC50 value = 0.0092 and 0.016 µM, respectively) than the standards (IC50 value = 0.11 and 0.14 µM, respectively, for lazabemide and pargyline). Moreover, NEA3 and NEA1 showed greater selectivity index (SI) values toward MAO-B over MAO-A (SI of >1652.2 and >2500.0, respectively). The inhibition and kinetics studies suggested that NEA3 and NEA1 are reversible and competitive inhibitors with Ki values of 0.013 ± 0.005 and 0.0049 ± 0.0002 µM, respectively, for MAO-B. In addition, both NEA3 and NEA1 showed efficient BACE1 inhibitions with IC50 values of 8.02 ± 0.13 and 8.21 ± 0.03 µM better than the standard quercetin value (13.40 ± 0.04 µM). The parallel artificial membrane permeability assay (PAMPA) method demonstrated that all the synthesized derivatives can cross the blood–brain barrier (BBB) successfully. Docking analyses were performed by employing an induced-fit docking approach in the GLIDE module of Schrodinger, and the results were in agreement with their in vitro inhibitory activities. The present study resulted in the discovery of potent dual inhibitors toward MAO-B and BACE1, and these lead compounds can be fruitfully explored for the generation of newer, clinically active agents for the treatment of neurodegenerative disorders.  相似文献   

15.
The reported competition STD NMR method combines saturation transfer difference (STD) NMR with competition binding experiments to allow the detection of high-affinity ligands that undergo slow chemical exchange on the NMR time-scale. With this technique, the presence of a competing high-affinity ligand in the compound mixture can be detected by the disappearance or reduction of the STD signals of a low-affinity indicator ligand. This is demonstrated on a BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) protein-inhibitor system. This method can also be used to derive an approximate value, or a lower limit, for the dissociation constant of the potential ligand based on the reduction of the signal intensity of the STD indicator, which is illustrated on an HSA (human serum albumin) model system. This leads to important applications of the competition STD NMR method for lead discovery: it can be used (i) for compound library screening against a broad range of drug targets to identify both high- and low-affinity ligands and (ii) to rank order analogs rapidly and derive structure-activity relationships, which are used to optimize these NMR hits into viable drug leads.  相似文献   

16.
The inhibition of β-secretase (BACE1) is currently the main pharmacological strategy available for Alzheimer’s disease (AD). 2D QSAR and 3D QSAR analysis on some cyclic sulfone hydroxyethylamines inhibitors against β-secretase (IC50: 0.002–2.75 μM) were carried out using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods. The best model based on the training set was generated with a HQSAR q2 value of 0.693 and r2 value of 0.981; a CoMFA q2 value of 0.534 and r2 value of 0.913; and a CoMSIA q2 value of 0.512 and r2 value of 0.973. In order to gain further understand of the vital interactions between cyclic sulfone hydroxyethylamines and the protease, the analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the BACE1. The final QSAR models could be helpful in the design and development of novel active BACE1 inhibitors.  相似文献   

17.
Memapsin 2 (BACE) is an aspartyl protease known as beta-secretase that acts on the production of the beta-amyloid peptide in the human brain, a key event in the pathogenesis of Alzheimer's disease. Although it is expected that the net charge of the catalytic Asp diad would be -1 as in other kinds of aspartyl proteases, the exact protonation states of Asp32 and Asp228 have not been known without ambiguity. Two independent molecular dynamics (MD) simulations of BACE in complex with the potent inhibitor OM99-2 are carried out to determine the preferred protonation state of the Asp diad in the context that is consistent with the previous X-ray crystal structure. The results show that a strong hydrogen bond between the inhibitor hydroxyl group and Asp228 can be maintained only when Asp32 is neutral and Asp228 is ionized. The preference of this protonation state is further supported from the energetic and structural features found in the docking experiment of a novel potent inhibitor with the BACE active site. Thus, both MD and docking studies suggest that the role of hydrogen bond acceptor for the hydroxyl and piperazine groups of the inhibitors should be played by Asp228 instead of Asp32. This may be a key piece of information for the structure-based design/discovery of new inhibitor drugs.  相似文献   

18.
A series of carboxylate compounds were prepared from N(alpha)-substituted 2,3-diaminopropionic acid and were tested for efficacy as matrix metalloproteinase (MMP) inhibitors. During modeling of the initial compound 10a, we utilized three-dimensional structure modeling software (InsightII/Discover Ver. 2.98). Some of the prepared carboxylate derivatives, such as carbamate compounds (12c,d, 22) and sulfonamide compounds (14b,c), proved to be effective MMP-1 inhibitors (with IC50 values of a 10(-6) M order), depending on the substituent at the N(alpha)-position of 2,3-diaminopropionic acid. Some of them were also evaluated for inhibition of stromelysin-1 (MMP-3), and the sulfonamide compound 14c exceeded the lead compound 5b in its MMP-3 inhibitory potency. For the carbamate compounds, we investigated the minimum molecular size at which the MMP-1 inhibitory potency was maintained, and found that this was P3-P1' compound 10b.  相似文献   

19.
《Tetrahedron letters》2014,55(52):7229-7232
Four multiply halogenated azaxanthones 3, 4b, 5, and 6 were synthesized as novel core building blocks of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors. Each of these heterocycles requires a specific synthetic strategy to control not only the aza-positions, but also the regiochemistry of the fully differentiated and highly reactive halogen substituents.  相似文献   

20.
The ability to identify fragments that interact with a biological target is a key step in FBDD. To date, the concept of fragment based drug design (FBDD) is increasingly driven by bio-physical methods. To expand the boundaries of QSAR paradigm, and to rationalize FBDD using In silico approach, we propose a fragment based QSAR methodology referred here in as FB-QSAR. The FB-QSAR methodology was validated on a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors, disclosed by GlaxoSmithKline Pharmaceuticals as potential anti-Alzheimer agents. To address the issue of target selectivity, a major confounding factor in the development of selective BACE1 inhibitors, FB-QSSR models were developed using the reported off target activity values. A heat map constructed, based on the activity and selectivity profile of the individual R-group fragments, and was in turn used to identify superior R-group fragments. Further, simultaneous optimization of multiple properties, an issue encountered in real-world drug discovery scenario, and often overlooked in QSAR approaches, was addressed using a Multi Objective (MO-QSPR) method that balances properties, based on the defined objectives. MO-QSPR was implemented using Derringer and Suich desirability algorithm to identify the optimal level of independent variables (X) that could confer a trade-off between selectivity and activity. The results obtained from FB-QSAR were further substantiated using MIF (Molecular Interaction Fields) studies. To exemplify the potentials of FB-QSAR and MO-QSPR in a pragmatic fashion, the insights gleaned from the MO-QSPR study was reverse engineered using Inverse-QSAR in a combinatorial fashion to enumerate some prospective novel, potent and selective BACE1 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号