首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(p‐xylylene)s (PPX) have found wide applications in various fields owing to their chemical robustness, low gas permeability and excellent dielectric properties. As a structural isomer of PPX, poly(o‐xylylene)s (POX), possessing a distinct main‐chain connectivity, are excellent candidates to pursue high‐performance materials; however, the investigation of POX is hampered by the lack of efficient synthetic methods. Herein, we report a straightforward way to access POXs through a cobalt‐catalyzed reductive polymerization. This method not only allows the direct preparation of electronically unmodified POXs, but also enables the copolymerization between o‐xylylene dibromides bearing different aryl or benzylic substituents. The glass transition temperatures of the copolymers can be finely tuned by varying the ratio between comonomers. The obtained POXs are solvent processible and amenable for thin‐film fabrication. As aryl bromide moiety remains untouched during the polymerization, post‐polymerization functionalization is easily achieved through Suzuki‐Miyaura coupling reaction. The chemistry also enables the copolymerization of xylylene dibromide regioisomers, thereby leading to diversified non‐conjugated polymers, whose backbones are rich in arylene moieties. Moreover, the use of the polymerization strategy to synthesize structurally novel porous polymers is demonstrated.  相似文献   

2.
以咔唑和对二氯甲基苯为原料, 合成了以咔唑为Z基团的双功能团RAFT聚合链转移试剂N-咔唑二硫代甲酸1,4-对二甲基苯双酯(PXCBD). 以PXCBD为链转移试剂, 以苯乙烯、丙烯酸甲酯及N,N-二丁基丙烯酰胺为单体, 考察了PXCBD在RAFT聚合中合成多嵌段共聚物上的应用, 并研究了PXCBD及由其合成的聚合物的荧光特性. 研究结果表明, PXCBD是一种性能优异的双功能团RAFT聚合链转移试剂, 可用于合成特殊结构并且带有荧光标识的功能高分子材料.  相似文献   

3.
Organic/inorganic hybrid polymers have been widely studied for their potential use in nanocontainers and nanocarriers.In this article,one star-shaped hybrid polymer,polyhedral oligomeric silsesquioxane (POSS) grafted poly (N,N-(dimethylamino) ethyl methacrylate)(POSS-g-PDMA),was synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT).The pH stimuli-responsive character of POSS-g-PDMA in aqueous solution were also studied.  相似文献   

4.
《中国化学快报》2020,31(6):1660-1664
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc) amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT) dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide) trithiocarbonate(PDMAc-TTC-PDMAc) bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs) wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm) and vesicles with HHHs features were also synthesized in high solid content systems(30 wt% and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.  相似文献   

5.
A series of neutral rare-earth metal amides containing different achiral and chiral heteroscorpionate ligands was synthesized and characterized and these compounds were employed in the polymerization of cyclic esters. Thus, treatment of [Ln{N(SiHMe(2))(2)}(3)(thf)(2)] (Ln = Nd, Sm) with acetamide or thioacetamide heteroscorpionate ligands for 2 h at 0 °C afforded the α-agostic silylamido dimeric rare-earth compounds [Ln{N(SiHMe(2))(2)}(NNE)](2) (Ln = Nd and Sm; NNE = heteroscorpionate ligands, E = O, S) (1-8), some as enantiopure complexes. Complexes 1-8 contain dianionic heteroscorpionate pseudoallyl ligands resulting from C-H activation of the bridging methine group of the bis(pyrazol-1-yl)methane moiety and subsequent coordination to the metal center. However, when the reaction was carried out for 1 h at lower temperature new bis(silylamido) dimeric lanthanide compounds [Ln{N(SiHMe(2))(2)}(2)(NNE)](2) (Ln = Nd and Sm; E = O) (9 and 10) were obtained. The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of 1, and 4 were also established. Neodymium complexes are active initiators for the ring-opening polymerization (ROP) of lactide (LA) and lactones, giving rise to medium-high molar mass polymers under mild conditions and with narrow polydispersities. These complexes were well suited for achieving well-controlled polymerization through an insertion-coordination mechanism. Achiral and racemic complexes did not affect stereocontrol in the polymerizarion of rac-LA but the enantiomerically pure complex 1 was found to exhibit a homosteric preference for one of the two enantiomers of rac-LA at low conversions.  相似文献   

6.
The steric effect of an amide group on the synthesis, molecular structures and reactivity of ytterbium amides supported by linked bis(amidinate) L (L = [Me3SiNC(Ph)N(CH2)3NC(Ph)NSiMe3]) is reported. Reaction of LYbCl(THF)2 with equimolar NaNHAr' and NaNHAr (Ar' = 2,6-Me2C6H3; Ar = 2,6-iPr2C6H3), respectively, gave the corresponding monometallic amide complexes LYb(NHAr')(DME) 1 and LYb(NHAr)(DME) 2, in which the linked bis(amidinate) is coordinated to the metal center as a chelating ligand. The similar reaction with NaN(SiMe3)2 afforded a bimetallic amide complex (TMS)2NYb(L)2YbN(TMS)2 3 formed through the rearrangement reaction of L induced by the bulky N(SiMe3)2 group. In complex 3 the two linked bis(amidinate)s act as bridging ancillary ligands to link two YbN(TMS)2 species in one molecule. The definite molecular structures of 1-3 were provided by single-crystal X-ray analysis. Complexes 1-3 are efficient initiators for the polymerization of L-lactide, and their catalytic performance is highly dependent on the amido groups and molecular structures. The polymerizations initiated by complexes 1 and 2 proceeded in a living fashion as evidenced by the narrow polydispersities of the resulting polymers, together with the linear natures of the number average molecular weight versus conversion plots, while the polymerization system with complex 3 provided polymers with rather broad molecular weight distributions.  相似文献   

7.
Bis(imino)pyrrolyl vanadium(III) complexes 2a-e [2,5-C(4)H(2)N(CH=NR)(2)]VCl(2)(THF)(2) [R = C(6)H(5) (2a), 2,6-Me(2)C(6)H(3) (2b), 2,6-(i)Pr(2)C(6)H(3) (2c), 2,4,6-Me(3)C(6)H(2) (2d), C(6)F(5) (2e)] and bis(iminopyrrolyl) vanadium(III) complex 4f [C(4)H(3)N(CH=N-2,6-(i)PrC(6)H(3))](2)VCl(THF) have been prepared in good yields from VCl(3)(THF)(3) by treating with 1.0 and 2.0 equivalent deprotonated ligands in tetrahydrofuran (THF), respectively. These complexes were characterized by FTIR and mass spectra as well as elemental analysis. Structures of 2c and 4f were further confirmed by X-ray crystallographic analysis. DFT calculations indicated the configurations of 2a-e with two nitrogen atoms of the chelating ligand coordinating with vanadium metal centre were more stable in energy. These complexes were employed as catalysts for ethylene polymerization at various reaction conditions. On activation with Et(2)AlCl, these complexes exhibited high catalytic activities (up to 22.2 kg mmol(-1)(V) h(-1) bar(-1)) even at high temperature, suggesting these catalysts possessed remarkable thermal stability. Moreover, high molecular weight polymer with unimodal molecular weight distributions can be obtained, indicating the polymerization took place in a single-site nature. The copolymerizations of ethylene and 1-hexene with precatalysts 2a-e and 4f were also explored in the presence of Et(2)AlCl. Catalytic activity, comonomer incorporation, and properties of the resultant polymers can be controlled over a wide range by tuning catalyst structures and reaction parameters.  相似文献   

8.
The effect of solvents (toluene, dichloromethane, and hexane) was studied on the polymerization of propylene with the octahedral complexes bis(trimethylsilyl)benzamidinate titanium dichloride(a), bis(acetylacetonate) titanium dichloride(b), and bis(diethylamino) titanium di‐2‐(diphenylphosphanylamino)pyridine as catalytic precursors and methylalumoxane as the cocatalyst. For comparison, the polymerization was also performed in plain liquid propylene without the addition of any solvent. The obtained polymers were fractionated by refluxing hexane. The activity of the complexes and the molecular weights and tacticities of the whole polymers and their different fractions were the studied parameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4505–4516, 2005  相似文献   

9.
Iniferters are initiators that induce radical polymerization that proceeds via initiation, propagation, primary radical termination, and transfer to initiator. Because bimolecular termination and other transfer reactions are negligible, these polymerizations are performed by the insertion of the monomer molecules into the iniferter bond, leading to polymers with two iniferter fragments at the chain ends. The use of well‐designed iniferters would give polymers or oligomers bearing controlled end groups. If the end groups of the polymers obtained by a suitable iniferter serve further as a polymeric iniferter, these polymerizations proceed by a living radical polymerization mechanism in a homogeneous system. In these cases, the iniferters (C S bond) are considered a dormant species of the initiating and propagating radicals. In this article, I describe the history, ideas, and some characteristics of iniferters and living radical polymerization with some iniferters that contain dithiocarbamate groups as photoiniferters and several compounds as thermal iniferters. From the viewpoint of controlled polymer synthesis, iniferters can be classified into several types: thermal or photoiniferters; monomeric, polymeric, or gel iniferters; monofunctional, difunctional, trifunctional, or polyfunctional iniferters; monomer or macromonomer iniferters; and so forth. These lead to the synthesis of various monofunctional, telechelic, block, graft, star, and crosslinked polymers. The relations between this work and other recent studies are discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2121–2136, 2000  相似文献   

10.
Oligomers and polymers containing triazole units were synthesized by the copper(I)‐catalyzed 1,3‐dipolar cycloaddition step‐growth polymerization of four difunctional azides and alkynes. In a first part, monofunctional benzyl azide was used as a chain terminator for the polyaddition of 1,6‐diazidohexane and α,ω‐bis(O‐propargyl)diethylene glycol, leading to polytriazole oligomers of controlled average degree of polymerization (DPn = 3–20), to perform kinetic studies on low‐viscosity compounds. The monitoring of the step‐growth click polymerization by 1H NMR at 25, 45, and 60 °C allowed the determination of the activation energy of this click chemistry promoted polyaddition process, that is, Ea = 45 ± 5 kJ/mol. The influence of the catalyst content (0.1–5 mol % of Cu(PPh3)3Br according to azide or alkyne functionalities) was also examined for polymerization kinetics performed at 60 °C. In a second part, four high molar mass polytriazoles were synthesized from stoichiometric combinations of diazide and dialkyne monomers above with p‐xylylene diazide and α,ω‐bis(O‐propargyl)bisphenol A. The resulting polymers were characterized by DSC, TGA, SEC, and 1H NMR. Solubility and thermal properties of the resulting polytriazoles were discussed based on the monomers chemical structure and thermal analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5506–5517, 2008  相似文献   

11.
A new strategy toward patterned polymer brushes combining the spatially controlled deposition of poly[(hydroxymethyl‐p‐xylylene)‐co‐(p‐xylylene)] ( 1 ) by chemical vapor deposition (CVD) polymerization of 4‐(hydroxymethyl)[2.2]paracyclophane and surface‐initiated ring‐opening polymerization was developed. Patterns of polymer brushes with thicknesses between 53 and 538 Å were created. The approach does not require photolithographic tools and has potential applicability to a wide range of different substrates, such as glasses, polymers, metals or composites.  相似文献   

12.
Seven new structurally different bismaleimides were synthesized and characterized by infrared and proton nuclear magnetic resonance spectroscopy. The chain of these polymer precursors was extended by incorporating amidized, imidized, and esterified 4-chloroformyl phthalic anhydride. The bismaleimides containing amide and imide linkages were prepared by a simple synthetic route based on the reaction of the monomaleamic acid derived from various aromatic diamines (1 mol) with 4-chloroformyl phthalic anhydride (0.5 mol) and subsequent cyclodehydration of the intermediate triamic acid. In addition, chain extended bismaleimides were prepared by reacting the monomaleamic acid derived from p-phenylenediamine with several dianhydrides such as p-phenylene bis(trimellitamide anhydride), p-phenylene bis(trimellitate anhydride), and bis-phenol A bis(trimellitate anhydride). The differential thermal analysis scans of bismaleimides showed exotherms at 221–304°C associated with their polymerization reactions. The thermogravimetric analysis traces of polymers did not show a weight loss up to 351–393 and 344–372°C in N2 and air atmospheres, respectively. The anaerobic char yield of polymers at 800°C was 44–61%. These polymers can be used for fabrication of composites having improved properties.  相似文献   

13.
The reversible addition-fragmentation chain transfer polymerization of diisopropyl fumarate (DiPF) was carried out using ethyl 2-[[(dodecylthio)thioxymethyl]thio]-2-methylpropionate (T1) and 1,1′-(1,2-ethanediyl) bis[2-[[(dodecylthio)thioxymethyl]thio]-2-methylpropionate] (T2) as the monofunctional and difunctional chain transfer agents (CTAs) to synthesize poly(diisopropyl fumarate) (PDiPF) with a rigid chain conformation. The obtained PDiPF had a well-controlled molecular weight, molecular weight distribution, and structure of the chain ends. Size exclusion chromatography and NMR measurements revealed an excellent introduction efficiency (84–98%) of the terminal trithiocarbonate group into the polymer chain end. They were available as the monofunctional and difunctional macro-CTAs to synthesize the AB and ABA block copolymers, respectively. While the well-controlled block copolymers were solely obtained by the polymerization of 2-ethylhexyl acrylate as the second monomer in the presence of PDiPF as the macro-CTA, the block copolymerization of DiPF using poly(2-ethylhexyl acrylate) as the macro-CTA failed. The trithiocarbonate group at the chain end was completely removed by the reaction with n-butylamine and it was valid for the improvement of the coloration and other optical properties of the transparent polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2584–2594  相似文献   

14.
Three controlled/living radical polymerization processes, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP), were investigated for the polymerization of N,N-dimethylacrylamide in the presence of Lewis acids known to enhance isotacticity, such as yttrium trifluoromethanesulfonate (Y(OTf)(3)) and ytterbium trifluoromethanesulfonate (Yb(OTf)(3)). Poly(N,N-dimethylacrylamide) with controlled molecular weight, low polydispersity (M(w)/M(n) < 1.2), and a high proportion of meso dyads ( approximately 85%) was prepared by ATRP (with initiating system methyl 2-chloropropionate/CuCl/Me(6)TREN) and RAFT (with cumyl dithiobenzoate transfer agent) in the presence of Y(OTf)(3). The combination of NMP (using N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide, SG1) and a Lewis acid complexation technique led to less precise control over chain architecture and microstructure ( approximately 65% meso dyads), as compared to RAFT/Y(OTf)(3) or ATRP/Y(OTf)(3). The latter two systems were used for the first one-pot synthesis of stereoblock copolymers by radical polymerization. Well-defined stereoblock copolymers, atactic-b-isotactic poly(N,N-dimethylacrylamides), were obtained by adding Y(OTf)(3) at a given time to either RAFT or ATRP polymerizations, initially started without the presence of the Lewis acid.  相似文献   

15.
Gregor IK  Guilhaus M 《Talanta》1984,31(1):55-60
Details are given of a selective negative-ion mass-spectrometric method appropriate for the ultratrace determination of metals and organic compounds by means of their complexes. Direct introduction of the sample into the ion-source, attachment of low-energy electrons, and selected-ion monitoring are described, and comparative data are given relating to surface effects at the tips of insertion-probes on detection limits. Detection limits for chromium and cobalt, determined as their tris(2,2,6,6-tetramethylheptane-3,5-dione) chelates, were respectively 1.0 and 0.16 pg, and that for nickel [as its bis(N,N-diethyldithiocarbamate) complex] was 1.0 pg. Detection limits of 2.0 and 1.0 ng are attainable for malathion and ethion by measurement of the nickel(II) complexes of their O,O'-dialkyldithiophosphate hydrolysis products.  相似文献   

16.
A new spin on polymers: the title cations comprise low-spin Co(II) centers with neutral bis(imino)pyridine chelating ligands. These complexes serve as single-component ethylene polymerization catalysts and offer insight into the mechanism of chain growth and catalyst deactivation, which occurs by forming inactive cationic bis(imino)pyridine cobalt complexes with a diethyl ether ligand.  相似文献   

17.
([bis[μ-[(2,3-butanedione dioximato)(2-)-O:O′]] tetrafluorodiborato(2-)-N,N′,N″,N‴] cobalt), CoBF, has been used for the effective catalytic chain transfer of alkyl methacrylate homo- and copolymers under emulsion polymerization conditions. The catalytic chain transfer process reduces the rate of polymerization such that when the monomer is fed over 60 min the instantaneous conversion is low enough for the particle to be swollen with monomer, allowing diffusion of the catalysts between the aqueous and monomer phases. When the amount of the catalyst is reduced, the rate is increased, eventually leading to viscous, glassy particles that prevent catalyst mobility, which is observed as a breakdown in the polymerization mechanism. This can be circumvented by the addition of a 20% shot of monomer at the start of the reaction. The effective chain transfer coefficient decreases on increasing the length of the ester group of the methacrylate. The analysis of the polymers made by the technique described shows that the Tg of the polymers observe a broad transition due to the effect of chain length being pronounced at low molecular mass. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3549–3557, 1999  相似文献   

18.
用铜试剂(N,N-二乙基二硫代氨基甲酸钠)取代聚氯乙烯中的部分氯原子制备了N,N-二乙基二硫代氨基甲酸聚氯乙烯酯(PVC-SR),研究了紫外光照下PVC-SR引发甲基丙烯酸甲酯(MMA)的聚合反应,考察了光照时间、单体浓度、PVC-SR用量及官能度的影响.结果表明,PVC-SR能有效地引发MMA聚合,其产物是交联型接枝聚合物,且具有高接枝率和接枝效率。  相似文献   

19.
The atom transfer radical polymerization of cyclohexyl methacrylate (CHMA) is reported. Controlled polymerizations were performed with the CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine catalytic system with ethyl 2‐bromoisobutyrate as the initiator in bulk and different solvents (25 vol %) at 40 °C. The polymerization of CHMA in bulk resulted in a controlled polymerization, although the concentration of active species was relatively elevated. The addition of a solvent was necessary to reduce the polymerization rate, which was dependent on the dipole moment. Well‐controlled polymers were obtained in toluene, diphenyl ether, and benzonitrile solutions. Poly(cyclohexyl methacrylate) as a macroinitiator was used to synthesize the poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) block copolymer, which allowed a demonstration of its living character. In addition, two difunctional initiators, 1,4‐bis(bromoisobutyryloxy) benzene and 1,2‐bis(bromoisobutyryloxy) ethane, were used to initiate the atom transfer radical polymerization of CHMA. The experimental molecular weights of the obtained polymers were very close to the theoretical ones. These, along with the relative narrow molecular weight distributions, indicated that the polymerization was living and controlled. For confirmation, two different poly(tert‐butyl methacrylate)‐b‐poly(cyclohexyl methacrylate)‐b‐poly(tert‐butyl methacrylate) triblock copolymers were also synthesized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 71–77, 2005  相似文献   

20.
A new type of mediator for cobalt(II)-mediated radical polymerization is reported which is based on 1,3-bis(2-pyridylimino)isoindolate (bpi) as ancillary ligand. The modular synthesis of the bis(pyridylimino)isoindoles (bpiH) employed in this work is based on the condensation of 2-aminopyridines with phthalodinitriles. Reaction of the bpiH protio-ligands with a twofold excess of cobalt(II) acetate or cobalt(II) acetylacetonate in methanol gave [Co(bpi)(OAc)], which crystallize as coordination polymers, and a series of [Co(acac)(bpi)(MeOH)], which are mononuclear octahedral complexes. Upon heating the [Co(acac)(bpi)(MeOH)] compounds to 100 degrees C under high vacuum, the coordinated methanol was removed to give the five-coordinate complexes [Co(acac)(bpi)]. The polymerization of methyl acrylate at 60 degrees C was investigated by using one molar equivalent of the relatively short-lived radical source 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70) as initiator (monomer/catalyst/V-70: 600:1:1). The low solubility of the acetato complexes inhibits their significant activity as mediators in this reaction, whereas the acetylacetonate complexes control the radical polymerization of methyl acrylate more effectively. The radical polymerizations of the hexacoordinate complexes did not show a linear increase in number-average molecular weight (M(n)) with conversion; however, the polydispersities were relatively low (PDI=1.12-1.40). By using the pentacoordinate complexes [Co(acac)(bpi)] as mediators, a linear increase in M(n) values with conversion, which were very close to the theoretical values for living systems, and very low polydispersities (PDI<1.13) were obtained. This was also achieved in the block copolymerization of methyl acrylate and n-butyl acrylate. The intermediates with the growing acrylate polymer radical ((.)PA) were identified by liquid injection field desorption/ionization mass spectrometry as following the general formula [Co(acac)(4-methoxy-bpi)-(MA)(n)-R] (MA: methyl acrylate; R: C(CH(3))(CH(2)C(CH(3))(2)OCH(3))CN), a notion also confirmed by NMR end-group analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号