首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of replacing the conventional uniform macroion surface charge density with discrete macroion charge distributions on structural properties of aqueous solutions of like-charged macroions has been investigated by Monte Carlo simulations. Two discrete charge distributions have been considered: point charges localized on the macroion surface and finite-sized charges protruding into the solution. Both discrete charge distributions have been examined with fixed and mobile macroion charges. Different boundary conditions have been applied to examine various properties. With point charges localized on the macroion surface, counterions become stronger accumulated to the macroion and the effect increases with counterion valence. As a consequence, with mono- and divalent counterions the potential of mean force between two macroions becomes less repulsive and with trivalent counterions more attractive. With protruding charges, the excluded volume effect dominates over the increased correlation ability; hence the counterions are less accumulated near the macroions and the potential of mean force between two macroions becomes more repulsive/less attractive.  相似文献   

2.
We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions.The counterions consist of two rigidly bonded point charges,each of valency Z.The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges.The system is analyzed by employing a self-consistent field theory,which treats the short and long range interactions of the counterions within different approximations.We find that in the weak coupling limit,the interactions are only repulsive.In the intermediate coupling regime,the multivalent rod-like counterions can mediate attractive interactions between the surfaces. For sufficiently long rods,bridging contributes to the attractive interaction.In the strong coupling limit,the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces.Two minima can then appear in the force curve between surfaces.  相似文献   

3.
The interaction between particles in a colloidal system can be significantly affected by their bridging by polyelectrolyte chains. In this paper, the bridging is investigated by using a self-consistent field approach which takes into account the van der Waals interactions between the segments of the polyelectrolyte molecules and the plates, as well as the electrostatic and volume exclusion interactions. A positive contribution to the force between two plates is generated by the van der Waals interactions between the segments and the plates. This positive (repulsive) contribution plays an important role in the force when the distances between the plates are small. With increasing van der Waals interaction strength between segments and plates, the force between the plates becomes more repulsive at small distances and more attractive at large distances. When the surfaces of the plates have a constant surface electrical potential and a charge sign opposite to that of the polyelectrolyte chains, the force between the two plates becomes less attractive as the bulk polyelectrolyte concentration increases. This behavior is due to a higher bulk counterion concentration dissociated from the polyelectrolyte molecules. At short distances, the force between plates is more repulsive for stiffer chains. A comparison between theoretical and experimental results regarding the contraction of the interlayer separation between the platelets of vermiculite clays against the concentration of poly(vinyl methyl ether) was made.  相似文献   

4.
The effective interaction between two colloidal particles in a bath of monovalent co- and counterions is studied by means of lattice Monte Carlo simulations with the primitive model. The internal electrostatic energy as a function of the colloid distance is studied fixing the position of the colloids. The free energy of the whole system is obtained introducing a bias parabolic potential, that allows us to sample efficiently small separations between the colloidal particles. For small charges, both the internal and free energy increase when the colloids approach each other, resulting in an effective repulsion driven by the electrostatic repulsion. When the colloidal charge is large enough, on the other hand, the colloid-ion coupling is strong enough to form double layers. The internal energy in this case decreases upon approaching the colloids because more ions enter the double layer. This attractive contribution to the interaction between the colloids is stronger for larger charges and larger ionic concentrations. However, the total free energy increases due to the loss of ionic entropy, and resulting finally in a repulsive interaction potential driven by the entropic contributions. The loss of ionic entropy can be almost quantitatively reproduced with the ideal contribution, the same level of approximation as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The overall behavior is captured by the DLVO theory qualitatively, and a comparison is made with the functional form predicted by the theory, showing moderate agreement.  相似文献   

5.
The processes of attachment and detachment of small or medium-sized particles to relatively large bubbles during microflotation are considered in terms of the heterocoagulation theory. Calculations are made for the conditions that the surface potentials are of similar sign and constant, that one of the surface potentials is small, that hydrophobic attraction is absent, and that there are no surface deformations. Under these conditions bubble-particle aggregates may form as a result of an electrostatic attraction which exceeds the repulsive van der Waals force at intermediate distances. Next to electrostatic and van der Waals forces, hydrodynamic and gravitational forces are considered. These forces may overcome the electrostatic repulsion at large distances and promote particle bubble attachment. Strong electrostatic attraction at small distances, arising at a large difference of the surface potentials of the bubble and the particle and of low electrolyte concentrations, can prevent subsequent detachment by hydrodynamic and gravitational forces. With increasing electrolyte concentration the electrostatic barrier increases and the attractive electrostatic force diminishes. As a result, a critical electrolyte concentration for microflotation exists. Above this concentration attachment may still occur but it is followed by detachment. At lower electrolyte concentrations the electrostatic attractive force prevents the detachment. The dependence of the critical electrolyte concentration on the values of the bubble and particle potentials and the Hamaker constant is calculated. The critical concentration does not depend on particle or bubble size if the absolute values of the total detachment force and the total pressing force coincide, which is the case for Stokes and potential flow. For every electrolyte concentration lower than the critical value there are two critical particle sizes that limit the flotation possibility. For small particle sizes attachment is impossible because the pressing force is smaller than the electrostatic barrier. For large particle sizes detachment cannot be prevented because the detachment force exceeds the maximum electrostatic attraction. A microflotation domain of intermediate particle sizes exists in which irreversible heterocoagulation occurs. Copyright 2001 Academic Press.  相似文献   

6.
Dispersion, static correlation, and delocalisation errors in density functional theory are considered from the unconventional perspective of the force on a nucleus in a stretched diatomic molecule. The electrostatic theorem of Feynman is used to relate errors in the forces to errors in the electron density distortions, which in turn are related to erroneous terms in the Kohn-Sham equations. For H(2), the exact dispersion force arises from a subtle density distortion; the static correlation error leads to an overestimated force due to an exaggerated distortion. For H(2)(+), the exact force arises from a delicate balance between attractive and repulsive components; the delocalisation error leads to an underestimated force due to an underestimated distortion. The net force in H(2)(+) can become repulsive, giving the characteristic barrier in the potential energy curve. Increasing the fraction of long-range exact orbital exchange increases the distortion, reducing delocalisation error but increasing static correlation error.  相似文献   

7.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

8.
A charged Yukawa liquid confined in a slit nanopore is studied in order to understand excluded volume effects in the interaction force between the pore walls. A previously developed self-consistent scheme [S. Buyukdagli, C. V. Achim, and T. Ala-Nissila, J. Stat. Mech. 2011, P05033] and a new simpler variational procedure that self-consistently couple image forces, surface charge induced electric field, and pore modified core interactions are used to this aim. For neutral pores, it is shown that with increasing pore size, the theory predicts a transition of the interplate pressure from an attractive to a strongly repulsive regime associated with an ionic packing state, an effect observed in previous Monte Carlo simulations for hard core charges. We also establish the mean-field theory of the model and show that for dielectrically homogeneous pores, the mean-field regime of the interaction between the walls corresponds to large pores of size d > 4 ?. The role of the range of core interactions in the ionic rejection and interplate pressure is thoroughly analyzed. We show that the physics of the system can be split into two screening regimes. The ionic packing effect takes place in the regime of moderately screened core interactions characterized with the bare screening parameter of the Yukawa potential b ? 3/l(B), where l(B) is the Bjerrum length. In the second regime of strongly screened core interactions b ? 3/l(B), solvation forces associated with these interactions positively contribute to the ionic rejection driven by electrostatic forces and enhance the magnitude of the attractive pressure. For weakly charged pores without a dielectric discontinuity, core interactions make a net repulsive contribution to the interplate force and also result in oscillatory pressure curves, whereas for intermediate surface charges, these interactions exclusively strengthen the external pressure, thereby reducing the magnitude of the net repulsive interplate force. The pronounced dependence of the interplate pressure and ionic partition coefficients on the magnitude and the range of core interactions indicates excluded volume effects as an important ion specificity and a non-negligible ingredient for the stability of macromolecules in electrolyte solutions.  相似文献   

9.
We performed molecular dynamics simulations to study the interactions between model hydrophilic plates made of carbon atoms distributed on a hexagonal lattice. Although neutral, the plates carry equal amounts of positive and negative charges to represent physical dipoles. Using the thermodynamic perturbation theory we calculated the potential of mean force (PMF) acting between the plates as a function of the distance between these plates. We observed that, at distances when more than one water layer can be found between the plates, the contribution of water into the PMF can be either attractive or repulsive depending on the correlation between the charges situated on the plates.  相似文献   

10.
Direct measurements of the interaction forces between a spherical silica particle and a small air bubble have been conducted in aqueous electrolyte solutions by using an atomic force microscope (AFM). The silica particle was hydrophobized with a silanating reagent, and the interaction forces were measured by using several particles with different surface hydrophobicities. In the measured force curves, a repulsive force was observed at large separation distances as the particle moved towards the bubble. The origin of the repulsive force was attributed to an electrostatic double-layer force because both the particle and bubble were negatively charged. After the repulsive force, an extremely long-range attractive force acted between the surfaces. These results indicate that the intervening thin water film between the particle and bubble rapidly collapsed, resulting in the particle penetrating the bubble.

The instability of the thin water film between the surfaces suggests the existence of an additional attractive force. By comparing the repulsive forces of the obtained force curves with the DLVO theory, the rupture thickness was estimated. The hydrophobicity of the particle did not significantly change the rupture thickness, whereas the pH of the solution is considered to be a critical factor.  相似文献   


11.
The aggregation of inhomogeneously charged colloids with the same average charge is analyzed using Monte Carlo simulations. We find aggregation of colloids for sizes in the range 10-200 nm, which is similar to the range in which aggregation is observed in several experiments. The attraction arises from the strongly correlated electrostatic interactions associated with the increase in the counterion density in the region between the particles; this effect is enhanced by the discreteness and mobility of the surface charges. Larger colloids attract more strongly when their surface charges are discrete. We study the aggregation as functions of the surface charge density, counterion valence, and volume fraction.  相似文献   

12.
The long-range electrostatic interaction between a pair of similarly charged colloidal spheres and a charged planar wall at low surface potentials is theoretically investigated. The linear Poisson-Boltzmann equation (PBE) and the point charge approximation of the charged sphere are used. The electrical potential distribution in the electrolyte solution is found from the PBE at the constant surface potentials using the image charge method. The electrostatic forces acting on the spheres are then calculated. The results show that the repulsive interaction between a pair of similarly charged colloidal spheres clearly decreases when a charged wall appears nearby, but it is impossible for an attractive force to emerge at the scaled surface potentials less than 1. There is, however, an attractive force between the charged wall and the similarly charged colloidal spheres, when the surface potential zetap on the wall is sufficiently higher than the surface potential zetas on the spheres to make zetap > zetasexp(kappah) (h is the distance from the wall to the sphere center). In this case, there are negative surface charges on the spheres at positive surface potential zetas. It is these negative charges that produce the above attraction. Copyright 1999 Academic Press.  相似文献   

13.
The surface charging properties of polycrystalline α-alumina fibres in aqueous electrolyte solutions have been investigated by direct force and streaming potential measurements. The presence of both Al and Si on the surface of the fibres resulted in a chemically heterogeneous surface. The heterogeneous distribution of Si resulted in large attractive forces between the fibres at moderate to low pH values and a pzc/iep at a pH value of approximately 5.5. The origin of this force was electrostatic in nature as the force profiles were well described by the DLVO theory of colloid stability. The agreement between the direct force and streaming potential measurements was good both in terms of the magnitude of the potentials and the position of the pzc/iep. By acid washing the fibres the chemical heterogeneity of the surface was reduced and the attractive force profiles at lower pH values were not observed. Instead repulsive forces were observed which were well described by DLVO theory at all separation distances greater than 8 nm. At smaller separation distances an additional repulsive force was measured which was attributed to the presence of a Al(OH)3 like layer on the surface of the alumina. The acid washing treatment also resulted in a shift in the pH at which the pzc/iep occurred to a value of 6.5, presumably due to a lower surface silica concentration.  相似文献   

14.
Within a general theoretical framework, we study the effective, deformation-induced interaction between two colloidal particles trapped at a fluid interface in the regime of small deformations. In many studies, this interaction has been computed with the ansatz that the actual interface configuration for the pair is given by the linear superposition of the interface deformations around the single particles. Here, we assess the validity of this approach and compute the leading term of the effective interaction for a large interparticle separation beyond this so-called superposition approximation. As an application, we consider the experimentally relevant case of interface deformations owing to the electrostatic field emanating from charged colloidal particles. In mechanical isolation, i.e., if the net force acting on the total system consisting of the particles plus the interface vanishes, the superposition approximation is actually invalid. The effective capillary interaction is governed by contributions beyond this approximation and turns out to be attractive. For sufficiently small surface charges on the colloids, such that linearization is strictly valid, and at asymptotically large separations, the effective interaction does not overcome the direct electrostatic repulsion between the colloidal particles.  相似文献   

15.
16.
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)].  相似文献   

17.
The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid–base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid–base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to bring about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling.  相似文献   

18.
The crystallization of proteins or colloids is often hindered by the appearance of aggregates of low fractal dimension called gels. Here we study the effect of electrostatics upon crystal and gel formation using an analytic model of hard spheres bearing point charges and short range attractive interactions. We find that the chief electrostatic free energy cost of forming assemblies comes from the entropic loss of counterions that render assemblies charge-neutral. Because there exists more accessible volume for these counterions around an open gel than a dense crystal, there exists an electrostatic entropic driving force favoring the gel over the crystal. This driving force increases with increasing sphere charge, but can be counteracted by increasing counterion concentration. We show that these effects cannot be fully captured by pairwise-additive macroion interactions of the kind often used in simulations, and we show where on the phase diagram to go in order to suppress gel formation.  相似文献   

19.
20.
The proposed model views drop coalescence in a turbulent flow field as a two-step process consisting of formation of a doublet due to drop collisions followed by coalescence of the individual droplets in a doublet due to the drainage of the intervening film of continuous phase under the action of colloidal (van der Waals and electrostatic) and random turbulent forces. The turbulent flow field was assumed to be locally isotropic. A first-passage-time analysis was employed for the random process of intervening continuous-phase film thickness between the two drops of a doublet in order to evaluate the first two moments of coalescence-time distribution of the doublet. The average drop coalescence time of the doublet was dependent on the barrier for coalescence due to the net repulsive force (net effect of colloidal repulsive and turbulent attractive forces). The predicted average drop coalescence time was found to be smaller for larger turbulent energy dissipation rates, smaller surface potentials, larger drop sizes, larger ionic strengths, and larger drop size ratios of unequal-sized drop pairs. The predicted average drop coalescence time was found to decrease whenever the ratio of average turbulent force to repulsive force barrier became larger. The calculated coalescence-time distribution was broader, with a higher standard deviation, at lower energy dissipation rates, higher surface potentials, smaller drop sizes, and smaller size ratios of unequal drop pairs. The model predictions of average coalescence-rate constants for tetradecane-in-water emulsions stabilized by sodium dodecyl sulfate (SDS) in a high-pressure homogenizer agreed fairly well with the inferred experimental values as reported by Narsimhan and Goel (J. Colloid Interface Sci. 238 (2001) 420-432) at different homogenizer pressures and SDS concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号