首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响   总被引:13,自引:4,他引:13  
煤粉再燃技术是目前电站锅炉降低Nx排放的一种有效技术。本文在一维沉降炉上进行了不同煤种、不同煤粉细度的煤粉再燃脱硝降低NOx排放的试验研究。试验结果表明:高挥发分的煤种在再燃降低NOx时的效果更显著。对于同一煤种,采用细度更细的煤,合适的再燃区停留时间,可以获得高的降低NOx排放效果,并可使煤粉的燃尽率达到90%左右。本文还采用最小燃尽高度的方法探讨了再燃过程中煤粉细度的选择方法,分析得出,为使再燃区的煤粉能完全燃烧,充分发挥还原NOx的效果,必须采用细粉或者超细粉。  相似文献   

2.
在3.2 MW 卧式炉中对污泥水煤浆和大同烟煤水煤浆进行了对比燃烧实验,分别研究了煤浆的着火、燃烧、结渣及污染物排放特性。结果表明,掺混 10%污泥的水煤浆着火容易,燃烧稳定,炉膛火焰分布均匀,燃烧和结渣特性均优于大同烟煤水煤浆。污泥的添加使水煤浆燃烧烟气中SO2和NOx的浓度偏高,实际应用中可通过加入固硫剂等方式缓解。污泥水煤浆在卧式炉中的燃烧状况较理想,为城市污泥资源化利用提供了一条可行的新途径。  相似文献   

3.
煤焦部分气化、燃烧集成热重分析研究   总被引:1,自引:1,他引:0  
在热天平上进行了煤焦部分气化、燃烧的实验研究。所得到的三种不同煤焦 (神木、彬县、西山 )在不同温度 ,不同气化碳转化率下的部分气化 ,燃烧失重曲线表明 :煤种、气化碳转化率对燃烧失重均有影响。气化碳转化率越高 ,所得到的焦燃烧速率越小。同时从实验中得到 :正确选择气化碳转化率在进行部分气化、燃烧集成优化中是非常重要的。  相似文献   

4.
循环流化床燃煤过程NO、N2O和SO2的排放行为研究   总被引:2,自引:2,他引:2  
在30kW循环流化床装置上进行了中国西部三种煤的燃烧实验,考查了燃烧温度、空气分级、空气过剩系数、固体颗粒循环料率和煤种等因素对NO、N2O、SO2污染物排放的影响。结果表明,强化空气分级可显著降低高挥发分煤种NO的生成量,但对N2O影响不大;增加空气过剩系数同时增加了NO与N2O的排放;增加固体循环料率显著降低NO生成量,但N2O排放略有增加;高阶煤燃烧生成较多N2O,低阶煤生成较多NO。燃烧温度1120K、过剩空气系数1.25下约85%燃料中N转化为N。实验范围内改变操作参数不影响SO2与CO排放量。  相似文献   

5.
在高温管式电加热炉上进行了三种煤单独燃烧,三种煤添加1%、3%、5%溴化钙与醋酸钙燃烧,以及一种煤添加Fe2O3燃烧实验,燃烧温度为1 250℃。收集了各燃烧过程的飞灰,对收集的飞灰进行了Hg含量测定,并对飞灰进行了比表面积、EDS与XRD表征。实验与分析结果表明,三种煤燃烧后Hgp的生成特性显著不同;三号煤灰的比表面积最大但飞灰颗粒Hg含量及Hgp比率均很低;在添加CaBr2后,三种煤飞灰颗粒Hg含量及Hgp比率均显著增加;在三种煤中添加醋酸钙,及在三号煤中添加Fe2O3后,Hgp含量与比率有所增加,但增加幅度较小。  相似文献   

6.
利用热天平对比研究了大同煤及煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧行为,探讨CO2和H2O气化反应对其富氧燃烧特性的影响。结果表明,在5%氧气浓度下,煤粉在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧速率按顺序依次降低。氧气浓度降低到2%,由于CO2和H2O气化反应的作用,煤粉在高温区的整体反应速率按顺序依次增大。当氧气浓度为5%时,煤焦在O2/CO2中的燃烧速率要低于O2/N2中的燃烧速率,但燃烧反应推迟后气化反应的参与使得煤焦在O2/H2O/CO2中的整体反应速率显著升高。当氧气浓度降低到2%后,随着温度的升高,在CO2气化反应的作用下,煤焦在O2/CO2中的整体反应速率逐渐高于O2/N2中的燃烧速率。在O2/H2O/CO2中,由于H2O在共气化中起主要作用,煤焦在O2/H2O/CO2高温区的整体反应速率进一步升高。动力学分析表明,在5%氧浓度时,煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的表观活化能依次升高。随着氧气浓度的降低,在不同反应气氛中的表观活化能均有所下降。  相似文献   

7.
煤粉锅炉NOX排放特性及控制的研究   总被引:3,自引:2,他引:3  
对电站煤粉锅炉NOx生成特性进行了详细的研究,获得锅炉负荷、过量空气系数、热风温度、制粉系统运行方式、燃烧器配风形式、煤种等与NOx生成的关系,并就降低NOx的措施与锅炉效率的关系进行了分析,在此基础上提出电站煤粉锅炉在不影响锅炉燃烧效率的前提下,进行低NOx优化运行的方法,通过燃烧调整来达到控制NOx排放的目的。  相似文献   

8.
利用酸洗法和燃烧法分别得到煤中的有机物(脱灰煤粉)和煤灰,研究了煤变质程度、显微组分、煤灰含量等煤质特性对CeO2催化煤粉燃烧的影响。研究发现,变质程度对CeO2催化煤粉燃烧具有明显的影响,变质程度越高的脱灰煤粉燃点降低越多,燃速提高越快。其催化燃烧顺序为褐煤<烟煤<无烟煤。同时研究发现,CeO2对神华烟煤两种主要显微组分的燃烧没有明显的催化作用。煤灰对脱灰煤粉燃烧也有催化作用,对人工煤而言,当煤灰含量低于18%时,煤灰与CeO2具有协同作用。煤灰的质量分数为6%时,煤灰与CeO2的协同作用最强,之后随着煤灰增加协同作用逐渐变弱;当煤灰的质量分数超过18%时,协同作用消失,CeO2的催化作用消失。说明煤灰含量超过18%时,CeO2的催化作用被抑制。  相似文献   

9.
煤燃烧过程中加石灰石脱硫对NOx排放影响的研究   总被引:6,自引:1,他引:6  
讨论了煤燃烧过程中NO_x的析出特性和各种因素的影响。实验表明,加石灰石脱硫将使NO_x排放量上升,但是通过选择适当的运行参数,如温度、氧浓度、Ca/S比等和吸收剂种类,可以大大缓解脱硫与降低NO_x排放之间的矛盾。实验温区为600—1150℃,包括了流化床燃烧的温度范围,部分结果在流化床燃烧器上作了验证。  相似文献   

10.
制备了负载硅溶胶的CaSO4载氧体,并对其与CH4、CO和H2的反应特性进行了研究表征。采用管式炉实验系统,对PVC在基于CaSO4载氧体的化学链燃烧和空气燃烧两种方式下,二噁英的生成特性进行了实验研究。结果表明,负载了硅溶胶的CaSO4载氧体与CH4、CO和H2反应均接近完全转化,其中,与CH4和H2的反应时间显著短于CO。采用化学链燃烧方式可有效抑制PVC燃烧过程二噁英的生成,其生成量和毒性当量分别由空气燃烧中的34 172.5 pg/g及732.8 pg(I-TEQ)/g降到化学链燃烧的2 270.9 pg/g及290.2 pg(I-TEQ)/g,这主要是因为化学链燃烧过程中燃料与O2不直接接触,显著减少了大分子碳结构的氧化断裂以及HCl向Cl2的转化,从而抑制了二噁英的低温从头合成反应和前驱物生成反应。  相似文献   

11.
利用管式炉反应器在550-1 000℃对长治贫煤和脱矿物质煤分别在空气和O_2/CO_2气氛进行了燃烧实验。利用XRF、XRD等分析手段,对煤样的基本性能进行了分析表征,并采用热分析仪(TG-DTG)以及傅里叶红外气体分析仪(AntarisIGS)对贫煤燃烧过程中的燃烧特性和SO_2和NO_x释放规律进行了研究。结果表明,与原煤相比,脱矿物质煤的着火温度和燃烬温度有所降低;O_2/CO_2气氛下,原煤和脱矿物质煤的着火温度和燃烬温度都升高,说明当O_2浓度为20%时,空气气氛比O_2/CO_2气氛更易于着火和燃烬。此外,与长治原煤相比,脱矿物质煤在相同条件下燃烧时SO_2的释放量明显提高,而NO_x的释放量却有所降低。O_2/CO_2气氛下原煤燃烧时SO_2浓度比空气气氛下的要高,而脱矿物质煤燃烧时释放的SO_2浓度明显比空气气氛下的低;O_2/CO_2气氛下原煤和脱矿物质煤燃烧时释放的NOx浓度比空气气氛下燃烧时释放的NO_x浓度要低。  相似文献   

12.
为无害化处理油泥焦,采用小型流化床反应器,研究了不同温度、不同颗粒粒径下油泥焦的燃烧氮氧化物释放特性,并借助空气分级燃烧技术降低NO_x排放。SEM电镜和物理吸附结果表明,油泥焦颗粒表面结构致密、孔道稀疏,不利于其内部有机质充分燃烧。燃烧实验结果表明,油泥焦燃烧产生的NO_x主要来源于焦炭氮,来自挥发性氮的较少。适当降低燃烧温度、减小颗粒粒径既能保证油泥焦充分燃烧,又能抑制氮氧化物排放。实施空气分级燃烧时,通过优化过量空气系数、二次风比例和二次风入口位置,能够获得显著的NO_x减排效果,同时可以有效抑制飞灰产生,有助于烟气终极处理。  相似文献   

13.
煤化学链燃烧Fe2O3载氧体的反应性研究   总被引:4,自引:2,他引:2  
利用流化床反应器并以水蒸气作为气化-流化介质,研究了温度、反应时间、循环数对Fe2O3载氧体反应性的影响。实验表明,载氧体与煤气化产物的反应性随温度升高而增强,且温度越高,反应受化学反应控制时间越短。当温度高于900℃时,煤中碳转化为CO2的比率大于90%,载氧体体现了很好的反应性,但反应温度低于850℃时,比率小于75%。反应温度900℃时,CO2干基浓度随循环数而逐渐降低,CO、CH4浓度增加,且CH4浓度值大于CO。利用XRD、SEM分析了固体反应产物成分与微观形态结构。分析表明,Fe2O3的还原产物为Fe3O4,载氧体颗粒随循环数增加而逐渐烧结。  相似文献   

14.
基于钾基修饰铁矿石载氧体的煤化学链燃烧循环实验   总被引:2,自引:0,他引:2  
对天然的铁矿石加以钾基修饰,在流化床上进行了煤化学链燃烧循环实验。研究了改性后的铁矿石对气体产物浓度及含碳气体体积分数影响的持续力。钾基铁矿石缩短了反应时间并明显提高了CO2浓度;在20次循环中,钾基铁矿石能明显提高CO2体积分数并降低CO体积分数,11次循环后,CO2体积分数稍有减少,CO体积分数略有增加。借助于扫描电镜与电子能谱(SEM-EDX)和X射线衍射(XRD),对不同循环后的载氧体进行表征。与纯铁矿石相比,前10次循环钾基铁矿石载氧体表面严重烧结,20次循环之后烧结减轻,恢复多孔结构。结果表明,钾基铁矿石载氧体中KFe11O17或其衍生物对煤气化有催化作用;在20次循环中存在钾流失现象;20次循环后钾基铁矿石载氧体能完全氧化为Fe2O3。  相似文献   

15.
基于碱金属和过渡金属修饰铁矿石载氧体的煤催化燃烧   总被引:4,自引:1,他引:3  
煤气化反应是煤化学链燃烧过程的控制步骤,其反应速率慢。采用碱金属Na和过渡金属Ni对铁矿石载氧体进行修饰,在流化床反应器上研究了Na、Ni负载量和反应温度对煤化学链催化燃烧的影响。结果表明,在920℃时,Na-铁矿石的催化活性高于Ni-铁矿石,随着Na、Ni负载量的增加,煤化学链燃烧的反应速率加快,气体反应产物浓度达到峰值的时间缩短,反应后期气体产物的衰减速率变大,整个反应期间CO体积浓度明显减少,而CO2、H2体积浓度增大。当Na、Ni负载量均为6%时,两者进行比较分析,Ni在960℃时对煤化学链的催化燃烧效果最为显著,碳转化率高达92.7%,高于纯铁矿石约15.5%,而在800~920℃下,催化效果不明显;Na在800~960℃对煤气化反应的催化效果均较显著。SEM-EDX分析显示,反应结束后,Na-铁矿石载氧体表面Na盐流失严重,而Ni-铁矿石表面Ni盐负载较好。  相似文献   

16.
碳酸钾催化的铁基氧载体煤催化化学链燃烧   总被引:1,自引:0,他引:1  
研究了K2CO3催化剂及惰性担体对铁基氧载体煤化学链燃烧的影响.实验结果表明,K2CO3的添加可明显促进铁基氧载体与煤之间的反应速率,其原因可归结为从氧载体上迁移到煤颗粒上的K2CO3对煤-CO2气化步骤的催化作用(该步骤为整个还原过程的速率控制步骤);由于K2CO3本身的促熔效果及加入K2CO3后导致的剧烈氧化还原反应,可以发现,K2CO3会增大铁基氧载体的烧结;不同惰性担体对铁基氧载体与煤的反应性影响不大,这是由于惰性担体对还原速控步没有影响;K2CO3在多循环化学链燃烧过程中依然可以保持一定的催化活性,另外由于催化剂的流失与失活,使得氧载体的反应活性有所下降.  相似文献   

17.
以小型流化床为反应器、水蒸气为气化介质,在CaSO4氧载体中加入CaO颗粒进行煤气化—氧载体还原反应实验。实验结果表明,添加CaO改善了煤气化—CaSO4还原反应性能,提高了煤气化—CaSO4还原反应速率和CO2生成速率。但CaO添加剂的催化作用随反应温度的提高而减弱。900℃是较适宜的反应温度,此温度下加入适量CaO(CaO/CaSO4物质的量比1.18),气态硫化物释放得到显著抑制,SO2和H2S降幅分别为63.19%和27.37%;同时,还能控制CO2被吸收固化成CaCO3的比例低于2%。  相似文献   

18.
以天然石膏粉、膨润土(bentonite)和Fe(NO3)3·9H2O为原料,通过机械混合造粒法制备了钙基复合载氧体。在小型流化床反应器中,水蒸气作为气化-流化介质,研究了温度、活性组分含量及循环次数对复合载氧体反应活性的影响,同时考察了不同煤种化学链燃烧反应特性。实验结果表明,CaSO4含量为60%,Fe2O3为活性助剂的CaSO4-Fe2O3/ben(Ca-Fe/ben)载氧体平均磨损速率为0.089%/h。反应温度为900℃时,碳转化率达到95%所需的时间为20.8min,CO2平均干基浓度为95.99%,表现高的反应活性。10次氧化/还原反应后,CO2平均干基浓度保持在80%,载氧体保持良好的循环反应活性。同时,实验发现高挥发分高灰分的煤种更适于煤的化学链燃烧,且CO2浓度均保持在90%以上。粒径分布曲线表明循环反应中载氧体表现强的抗磨损能力。  相似文献   

19.
通过红外光谱、热重 质谱及燃烧 水解实验,研究了煤与废塑料共热解固体产物中氯的赋存形态及在燃烧过程中氯的释放特性。结果表明,温度低于600℃热解的半焦中存在有机氯化合物;600℃以上热解的半焦(或焦炭)中氯主要以无机盐类存在。燃烧过程中氯的释放率与燃烧温度,煤与废塑料共热解的温度以及共热解时废塑料的加入量有关。燃烧温度越高,氯的释放率越大,900℃燃烧时,氯的释放率都在94%以上;在同一温度燃烧时,热解温度越高,氯的释放率越低。400℃热解的半焦最高释放率达99.86%,而1000℃热解的焦炭的最高释放率为94.35%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号