首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional organic dyes have promising prospect in dye-sensitized solar cells as a crucial element, of which sensitizers based on donor-π-acceptor are the most important dyes. On the basis of the structures of the aromatic amine donors such as triphenylamine and indoline, this paper reviews the photoelectric conversion properties of organic sensitizers since 2008, and highlights research work in our laboratory in this area.  相似文献   

2.
Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm in inner pore diameter,and 20 nm in wall thickness were obtained by 40 V potentials anodization for 24 h.Their microstructures and surface morphologies were characterized by XRD,TEM,SAED and UV-vis spectroscopy.The photoelectrochemical properties of as-prepared unsensitized and dye-sensitized TNAs electrodes were examined under simulated solar light (AM 1.5,100 mW/cm2) illumination.The results showed that the photocurrent of the dye-sensitized TNAs electrodes reached 6.9 mA/cm2,which was 6 times more than that of the dye-sensitized TiO2 nanoparticles (TNPs) electrodes.It implied that the electron transport process and the charge recombination suppression within TNAs electrodes were much more favorable in comparison with that in the TNPs electrodes.Electrodes applying such kind of titania nanotubes will have a potential to further enhance the efficiencies of TNAs-based dye-sensitized solar cells.  相似文献   

3.
A novel benzodithiophene-containing organic dye BDT was synthesized and characterized as a sensitizer for a nanocrystalline TiO2-based dye-sensitized solar cell.The BDT dye shows two major electronic absorptions.The absorption of the BDT dye covers a broad visible range from 300 nm to 550 nm.The benzodithiophene unit was used as aπbridge with several advantages:(1) It facilitates the electron transfer from the donor to the acceptor;(2) A facile structural modification on the 4,8-positions in the benzodithiophene unit can be achieved;(3) Fusing benzene with two flanking thiophene units improves the thermal stability.Under simulated AM1.5G solar light(100 mW/cm2) illumination,the DSC based on BDT gives a power conversion efficiency of 1.78%.  相似文献   

4.
Perovskite solar cells(PSCs)have gained increasing attention due to their excellent photovoltaic performance,achieving certified power conversion efficiency(PCE)of 25.2%.To further enhance PCE and break the Shockley-Queisser limit of the single junction PSCs,great efforts have been made in tandem solar cells based on perovskite,including perovskite/Si,and perovskite/perovskite(all-perovskite).Among them,all-perovskite tandem solar cells exhibit unique advantages of both lowcost fabrication and high efficiency.They have advanced rapidly in these years,due to the realization of stable and efficient narrow-bandgap perovskites.In this work,we review the development of monolithic all-perovskite tandem solar cells and highlight the critical role of narrow-bandgap perovskites in recent progress of all-perovskite solar cells.We also propose our perspective of future directions on this subject.  相似文献   

5.
The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting factor is the improper contacts between the halide double perovskite and anode/cathode electrodes. Here, we improve the efficiency and stability of the bismuth-halide double perovskite based solar cells by a synergistic interface design for both electron and hole transport layers(ETL/HTL). The results show that the modification of the TiO_2 ETL with a thin hydrophobic C60 layer and replacement of the lithium-doped small molecule HTL with an un-doped conjugated polymer lead to higher surface quality of perovskite film and better energy-level alignment at the contacts. As a result, the optimized device shows reduced trap density, suppressed charge recombination and enhanced charge extraction, leading to an increase of 69% in device efficiency. In addition, the device also exhibits superior stability in ambient environment, heat stress and light bias after interface optimization. This work provides an efficient strategy for the device optimization of the emerging lead-free perovskite solar cells.  相似文献   

6.
New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were synthesized. The optical and electrochemical properties of the dyes were investigated,and their performance as sensitizers in solar cells was evaluated. Dye-sensitized solar cells based on dye containing bis-triphenylamine as the electron donor produced a photon-to-current conversion efficiency of 6.06%(Jsc = 14.21 m A/cm~2, Voc = 0.62 V, ff = 0.69) under 100 m W/cm~2 simulated AM 1.5 G solar irradiation(100 m W/cm~2).  相似文献   

7.
Organic solar cells are a current research hotspot in the energy field because of their advantages of lightness,translucency,roll to roll printing and building integration.With the rapid development of small molecule acceptor materials with high-performance,the efficiency of organic solar cells has been greatly improved.Further improving the device efficiency and stability and reducing the cost of active layer materials will contribute to the industrial development of organic solar cells.As a novel type of carbon nanomaterials,carbon dots gradually show great application potential in the field of organic solar cells due to their advantages of low preparation cost,non-toxicity and excellent photoelectric performance.Firstly,the synthesis and classification of carbon dots are briefly introduced.Secondly,the photoelectric properties of carbon dots and their adjusting,including adjustable surface energy level structure,good film-forming performance and up/down conversion characteristics are summarized.Thirdly,based on these intrinsic properties,the feasibility and advantages of carbon dots used in organic solar cells are discussed.Fourthly,the application progress of carbon dots in the active layer,hole transport layer,electron transport layer,interface modification layer and down-conversion materials of organic solar cells is also reviewed.Finally,the application progress of carbon dots in organic solar cells is prospected.Several further research directions,including in-depth exploration of the controllable preparation of carbon dots and their application in the fields of interface layer and up/down conversion for improving efficiency and stability of device are pointed out.  相似文献   

8.
Herein,we examine the performance of dye-sensitized solar cells containing five D-π-A organic dyes designed by systematic modification of π-bridge size and geometric structure.Each dye has a simple push-pull structure with a triarylamino group as an electron donor,bithiophene-4,4-dimethyl-4 H-cyclopenta 1,2-b:5,4-b’]dithiophene(M11),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophenethiophene(M12),thiophene-4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M13),4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene-benzene(M14),and 4,4-dimethyl-4 H-cyclopenta[1,2-b:5,4-b’]dithiophene(M15)units asπ-bridges,and cyanoacrylic acid as an electron acceptor/anchor.The extension of theπ-bridge linkage favors wide-range absorption but,because of the concomitant molecular volume increase,hinders the efficient adsorption of dyes on the TiO2 film surface.Hence,higher loadings are achieved for smaller dye molecules,resulting in(i)a shift of the TiO2 conduction band edge to more negative values,(ii)a greater photocurrent,and(iii)suppressed charge recombination between the photoanode and the redox couple in the electrolyte.Consequently,under one-sun equivalent illumination(AM 1.5 G,100 mW/cm2),the highest photovoltage,photocurrent,and conversion efficiency(η=7.19%)are observed for M15,which has the smallest molecular volume among M series dyes.  相似文献   

9.
Cuprous oxide(Cu2O),as an important p-type semiconductor,has been widely investigated due to its high electron transmission and facile preparation.However,the electrode made of only Cu2O has been rarely investigated.In order to demonstrate the possibility that material Cu2O can be applied to the electrode of p-type dye sensitized solar cells(DSSCs),the photo-electrodes made of prepared Cu2O powder and commercial Cu2O particles have been fabricated.The results show that the electrode based on as-prepared Cu2O(Cu2O-2) powder exhibits higher performance than that based on commercial Cu2O(Cu2O-1) particle.The device based on Cu2O-2 electrode reaches into an open-circuit voltage of 0.71 V,a short-circuit current density of 1.3 mA/cm^2,a fill factor(FF) of 46%,and a conversion efficiency of 0.42% measured under AM 1.5G(100 mW/cm^2) illumination.The enhancement performance of Cu2O-2 is attributed to the high dye adsorption of Cu2O-2 compared with that of Cu2O-1.To the best of our knowledge,this is the highest conversion efficiency value reported for solar cells based on Cu2O-DSSC.This work provides that Cu2O is also a candidate for constructing the electrode of p-type dye sensitized solar cells.  相似文献   

10.
Dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles have been synthesized and employed in dye-sensitized solar cells to form a quasi-solid state electrolyte. Owing to the long alkyl-chain capping around the TiO2 nanoparticles interacting with the liquid solvent, the dye sensitized solar cell based on such DBS-capped TiO2 nanoparticle framework material gel electrolyte shows higher stability compared with the non-capped one in the long-term application and gives a comparable overall efficiency of 6.3% at AM 1.5 illumination.  相似文献   

11.
Dye-sensitized solar cells(DSSCs) have attracted significant attention as alternatives to conventional silicon-based solar cells owing to their low-cost production,facile fabrication,excellent stability and high power conversion efficiency(PCE).The dye molecule is one of the key components in DSSCs since it significant influence on the PCE,charge separation,light-harvesting,as well as the device stability.Among various dyes,easily tunable phenothiazine-based dyes hold a large proportion and achieve impressive photovoltaic performances.This class of dyes not only has superiorly non-planar butterfly structure but also possesses excellent electron donating ability and large π conjugated system.This review summarized recent developments in the phenothiazine dyes,including small molecule phenothiazine dyes,polymer phenothiazine dyes and phenothiazine dyes for co-sensitization,especially focused on the developments and design concepts of small molecule phenothiazine dyes,as well as the correlation between molecular structures and the photovoltaic performances.  相似文献   

12.
Indoor photovoltaics have attracted increasing attentions owing to their great potential in supplying energy for low power devices under indoor light in our daily life.The third generation thin-film solar cells,including dye-sensitized solar cells,perovskite solar cells and organic solar cells,have made rapid progress from the aspect of materials design to photovoltaic performance.This review provides an overview on the recent advances in the development of indoor photovoltaic technologies based on the third generation solar cells.The design principles of advanced thin-film indoor photovoltaics were also summarized according to the characteristics of indoor light and the advantages of the third generation solar cells.Finally,after summarizing the current research progress,the perspective on this topic is provided.  相似文献   

13.
Three novel triphenylamine-based D-A-π-A-featured dyes (Z1-Z3) have been designed, synthesized and characterized for use in dye-sensitized solar cells. Benzothiazole was incorporated as an additional acceptor, which greatly enhanced the molar extinction coefficient of the dyes. Various conjugated linkers, such as benzene, furan and thiophene, were also introduced to configure the novel D-A-π-A framework in order to prolong electron flow and active transportation. Among all dyes, Z2 containing a thiophene linker exhibited the maximum overall conversion efficiency (η) of 4.16% (Jsc = 9.27 mA cm-2 , Voc = 642 mV, FF = 0.70) under standard global AM 1.5 G solar condition.  相似文献   

14.
At present,the stability of the new generation of solar cells based on hybrid perovskites is the bottleneck for their practical applications.Photochemical effects,high temperature,ultraviolet light,humidity and other known or still unknown factors might cause reduction of effectiveness or even irreversible loss of materials properties due to decomposition of functional layers within perovskite solar cells(PSCs).These factors alone have a serious impact on each component of the device,while their combinations lead to much more complicated effects and consequences.This review focuses on the stability of PSCs and the degradation of the device in a humid environment.We assess the instability factors and deep-seated principles of evolution of the device structure in a humidity environment with the emphasis on the influence on their interrelations.The related solutions are reviewed from the perspective of the encapsulation,perovskite active layer,carrier transport layer and electrodes.Combined with the latest research,we believe that the waterproof strategy of PSCs requires either tight encapsulation or thorough modifications in the device itself.Therefore,it is important to develop feasible strategies to improve the overall device stability over humid according to the target characteristics of various devices.  相似文献   

15.
Three structural modifications with incorporation of alkyl,alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influences on photophysical,electrochemical as well as photovoltaic properties in nanocrystalline TiO_2-based dye sensitized solar cells(DSSCs).The insertion of vinyl bond into the conjugation bridge leads to the molecular planar configuration,and the conjugation bridge of 3,4-ethylenedioxythiophene(EDOT)is prone to positively shift its highest occupied molecular orbital(HOMO).The electrochemical impedance spectroscopy(EIS)results indicate that the grafted long alkyl chain onto thiophene is favorable to suppress dye aggregation when adsorbed onto TiO_2film and modification on interface of TiO_2/dye/electrolyte,resulting in a relatively high open-circuit voltage(V_(oc)).Under optimized conditions,dye LS-4 bearing hexylthiophene as the conjugation bridge shows a relatively high overall conversion efficiency of5.45%,with a photocurrent of 11.61 mA cm~(-2),V_(oc)of 744 mV.  相似文献   

16.
Lu  Yunyue  Cheng  Yingchun  Li  Chengjie  Luo  Jiaxin  Tang  Weiqiang  Zhao  Shuangliang  Liu  Qingyun  Xie  Yongshu 《中国科学:化学(英文版)》2019,62(8):994-1000
Three new porphyrin dyes XW45-XW47 have been synthesized employing a dialkoxy-wrapped phenothiazine donor, a tetraalkoxy-wrapped porphyrin π-framework, a benzothiadiazole(BTD)-based auxiliary acceptor, and an anchoring benzoic acid group. On the basis of our previously reported dye XW36, XW45 was synthesized by introducing a BTD unit to broaden the absorption spectrum, further introducing a hexyl-substituent into the BTD unit afforded XW46, and an additional fluorine atom was introduced to the carboxyphenyl acceptor to afford XW47. As expected, the BTD unit obviously broadens and red-shifts the absorption threshold of XW45-XW47 to ca.750 nm. Dye-sensitized solar cells(DSSCs) were fabricated based on a cobalt electrolyte using chenodeoxycholic acid(CDCA) as the coadsorbent. Under full sun illumination, XW45 exhibits an efficiency of 9.73%, which is slightly lower than that of 10.19% obtained for the reference dye SM315. By contrast, XW46 and XW47 show higher efficiencies than SM315 owing to the improved anti-aggregation ability associated with the hexyl group on the BTD unit and better ICT effect induced by the fluorine atom on the carboxyphenyl unit. Thus, XW47 exhibits the highest efficiency of 10.41% among the porphyrin dyes. Furthermore, PT-C6 was used as the cosensitizer to improve the light harvesting ability and efficiencies of the cells due to its broad absorption within 350–560 nm. Thus, high efficiencies of 10.32%, 11.38% and 10.90% were achieved for the cosensitized solar cells based on XW45–XW47, respectively, owing to the obviously enhanced photocurrent density(JSC). In addition, under 30% full sun illumination, XW46+PT-C6 exhibits a high efficiency of 13.08%. These results give an effective method for building high performance DSSCs through the cosensitization of porphyrin dyes containing a wrapped donor, a wrapped porphyrin framework and a properly substituted auxiliary benzothiadiazole unit.  相似文献   

17.
Converting solar energy into valuable hydrogen and hydrocarbon fuels through photoelectrocatalytic water splitting and CO_2 reduction is highly promising in addressing the growing demand for renewable and clean energy resources. However, the solar-to-fuel conversion efficiency is still very low due to limited light absorption and rapid bulk recombination of charge carriers. In this work, we present chlorophyll(Chl) and its derivative sodium copper chlorophyllin(ChlCuNa), as dye sensitizers, modified BiVO_4 to improve the photoelectrochemical(PEC) performance. The photocurrent of BiVO_4 is surprisingly decreased after a direct sensitization of Chl while the sensitization of ChlCuNa obviously enhances photocurrent of BiV04 electrodes by improved surface hydrophilicity and extended light absorption.ChlCuNa-sensitized BiV04 achieves an improved H_2 evolution rate of 5.43 μmol h~(-1) cm~(-2) in water splitting and an enhanced HCOOH production rate of 2.15 μmol h~(-1) cm~(-2) in CO_2 PEC reduction, which are1.9 times and 2.4 times higher than pristine BiVO_4, respectively. It is suggested that the derivative ChlCuNa is a more effective sensitizer for solar-to-fuel energy conversion and CO_2 utilization than Chl.  相似文献   

18.
The performance of dye-sensitized solar cells(DSCs) could be improved by using rationally designed mesoporous film structure for electron collection, dye adsorption and light scattering. The development of a novel double layer film prepared by TiO_2 hierarchical submicrospheres and nanoparticles was reported in this article. The submicrospheres were composed of rutile nanorods of 10 nm diameter and the length of 150–250 nm, which facilitated fast electron transport, charge collection and light scattering. Using a double layer structure consisting of the 10 wt% film as a dye loading layer and the 50 wt% film as the light scattering layer, C101 sensitizer and liquid electrolyte, DSC yielded power conversion efficiency of 9.68% under 1 sun illumination.  相似文献   

19.
Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone.  相似文献   

20.
In this paper, photoexcitation processes in the bilayer devices based on inorganic materials and poly(N-vinylcarbazole) (PVK) were investigated. In order to clarify the roles of inorganic materials in photoconductive properties of bilayer devices, TiO2 and ZnS were chosen to combine with PVK. A model for generation of photocurrent (Iph) in single layer device of PVK was obtained. It is deduced that the recombination rate constant (Pcomb) and the ionization rate constant (y) ofexcitons should be considered as the most important factors for Iph. For inorganic materials (TiO2 or ZnS)/PVK bilayer devices, in reverse bias of-4 V, the photocurrent of 115 mA/cm^2 in the TiO2/PVK device was observed, but the photocurrent in the ZnS/PVK device was only 10 mA/cma under the illumination light of 340 nm and the light intensity of 14.2 mW/cm^2. The weaker photocurrent is attributed to the absorption of ZnS within UV region and the energy offset at the interface between PVK and ZnS, which impedes the transport of charge carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号