首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
直线型CnP^—(n=1~11)结构的理论研究   总被引:2,自引:0,他引:2  
以激光溅射方法产生了一系列含一个磷原子的碳原子簇负离子.针对其在实验中呈现的奇偶变化规律进行了量子化学从头算研究.在HF/6-311G*水平上(对单重态为RHF,多重态为ROHF)优化了直线型CnP-(n=1~11)键长和能量,计算了相邻簇离子的能量差与成簇碳原子的平均结合能及从CnP-分别解离C、C2、C3、P、CP、C2P等6种通道所需的能量.计算发现,n为奇数的CnP-单重态(1Σ)最稳定,而,n为偶数的簇离子则以三重态(3Σ)的能量较低.所计算的CnP-各结构参数均表现出奇偶交替的变化规律,n为奇数的CnP-相对稳定.  相似文献   

2.
采用固体13C-NMR核磁共振技术表征了甘肃窑街矿区油页岩的碳骨架结构,分析并计算了油母质团簇化学结构参数,包括团簇平均碳原子数、芳碳原子数、脂碳原子数及芳环数。在热重红外分析仪(TG-FTIR)上进行了油页岩的热解实验,得到了热解产物的生成规律。结合样品的团簇化学结构参数,采用基于油页岩结构的FLASHCHAIN模型模拟其热解产物的生成过程;模拟结果与TG-FITR实验数据符合较好,印证了模型预测的合理性。  相似文献   

3.
(BN)n团簇的结构和稳定性   总被引:9,自引:1,他引:9  
用HF方法、密度泛函理论的B3LYP以及微扰理论的MP2方法,在6—31G(d)基组 水平上,对(BN)n(n=1-16)团簇的各种可能结构进行了优化.讨论了环状与笼状稳 定团簇的几何构型、自然键轨道(NBO)、振动频率、结合能、核独立化学位移 (NICS)和能量二次差分,得到了(BN)n(n=1-16)团簇结构的稳定性信息.比较了 HF,B3LYP以及MP2三种理论方法对(BN)n团簇的适应性所表现出的差异.  相似文献   

4.
应用遗传算法对二氧化硅团簇(SiO2)n(n≤20)的结构进行了优化计算。分析讨论了结构和结合能随团簇尺寸的变化规律,发现(SiO2)n团簇系列不存在明显的幻数,并在n≤20的范围内,不呈现出相应大块物质的结构特征,  相似文献   

5.
在自制的仪器上,以脉冲激光束在高真空中溅射适当的样品,产生了一系列合有1个VA族原子(N、P、As)或ⅢA族原子(B、Al)及13个以下碳原子的原子簇负离子。在实验记录的飞行时间质谱中,这些簇离子的信号强度均因其碳原子数的奇偶而发生交替变化.对实验结果的分析研究显示:这些簇离子均为直链构型.VA或ⅢA族原子位于链的一端,所有成簇原子的价键均得到满足.  相似文献   

6.
本文用Huckel-Hubbard方法,考虑多电子体系的组态相互作用,计算出线性碳原子和离子团簇(Gn,C_n~±)的π电子体系能量E_n。两相邻原子簇的能量差△E_N=|E_n-E_(n-1)|与n的关系显示出与实验相符合的奇偶性质。由于条件的限制,只计算到n为6的碳原子和离子团簇,然后利用电子结构图,外推出n为7和8的原子和离子团簇的π电子能量。所得结果也定性显示出团簇的奇偶性。此外,我们还利用D_v—X_α方法进行对比计算,并讨论了计算结果。  相似文献   

7.
《化学学报》2012,70(15)
基于密度泛函理论中的BPBE方法和从头算的CCSD(T)方法,充分考虑自旋多重度,优化并得到了TiBn(n=1~12)团簇的稳定构型.二次差分能量分析表明n=2,8,10的团簇为幻数团簇.值得注意的是,电子相关效应对TiBn团簇的相对能量有重要影响.密度泛函理论方法得到n=3,7,10团簇为幻数团簇.对垂直电离势、垂直电子亲合势和化学硬度的分析表明,除TiB8外,n为偶数的团簇有较小的电子亲合势和较大的电离势,从反应性上来说,更稳定一些.  相似文献   

8.
采用密度泛函理论研究了InnAsn (n≤90)管状团簇以及单壁InAs纳米管的几何结构、稳定性和电子性质. 小团簇InnAsn (n=1-3)基态结构和电子性质的计算结果与已有报道相一致. 当n≥4时优化得到了一族稳定的管状团簇, 其结构基元(In原子与As原子交替排列的四元环和六元环结构)满足共同的衍化通式. 团簇的平均结合能表明横截面为八个原子的管状团簇稳定性最好. 管状团簇前线轨道随尺寸的变化规律有效地解释了一维稳定管状团簇的生长原因, 同时也说明了实验上之所以能合成InAs纳米管的微观机理. 此外, 研究结果表明通过管状团簇的有效组装可得到宽带隙的InAs半导体单壁纳米管.  相似文献   

9.
铜氧团簇负离子的产生   总被引:2,自引:0,他引:2  
自Smalley等利用激光蒸发/超声分子束载带(ix/un)法产生c。。问起,这种方法逐渐成为形成高质量气相团簇的常用实验手段,其中分子束载带的主要作用是缓冲气体通过提供三体碰撞稳定动力学激发的团簇并促进高质量团簇的形成.但0’Keef6门和Cre。Sy同的实验发现无需利用缓冲  相似文献   

10.
1,4-二氧六环和氨分子氢键团簇的从头算   总被引:2,自引:0,他引:2  
在不同基组水平上,对1,4-二氧六环和氨分子氢键团簇体系进行了从头算分子转道法研究,优化得到中性团簇,离子团簇和碎片离子(质子化团簇离子和非质子化团簇离子)平衡几何构型,研究结果表明:中性团簇最稳定构型为R-HN2-HNN2(R:1,4-二氧六环),离子团簇由于发生质子转移,其构型与中 团簇有较大的淡同,两类碎片离子R(NH3)+和R(NH3)H^+与中性团簇R(NH3)的结构也有所不同  相似文献   

11.
The Peterson olefination of aromatic aldehydes with an alpha-silyl selenoacetamide proceeded smoothly with high stereoselectivity to give E-alpha,beta-unsaturated selenoamides in good to high yields. The reaction with aldehydes bearing alkenyl and dienyl groups gave the corresponding selenoamides bearing dienyl and trienyl groups, but the stability of the products depended on the substituents on the aromatic ring. X-ray molecular analysis disclosed that the alpha,beta,gamma,delta-unsaturated selenoamides had a nearly planar structure. In the (77)Se NMR spectra, signals were observed in the region greater than 130 ppm depending on the substituents on the aromatic ring, whereas the (1)J coupling constant between the carbon atom and the selenium atom was almost independent of the substituents. A linear relationship was observed between the chemical shifts in the (77)Se NMR spectra and Hammet sigma parameters, and this correlation was retained even when one or two alkenyl groups were introduced to alpha,beta-unsaturated selenoamides, although it became less sensitive.  相似文献   

12.
Using CATALYST, a three-dimensional QSAR pharmacophore model for chloroquine(CQ)-resistance reversal was developed from a training set of 17 compounds. These included imipramine (1), desipramine (2), and 15 of their analogues (3-17), some of which fully reversed CQ-resistance, while others were without effect. The generated pharmacophore model indicates that two aromatic hydrophobic interaction sites on the tricyclic ring and a hydrogen bond acceptor (lipid) site at the side chain, preferably on a nitrogen atom, are necessary for potent activity. Stereoelectronic properties calculated by using AM1 semiempirical calculations were consistent with the model, particularly the electrostatic potential profiles characterized by a localized negative potential region by the side chain nitrogen atom and a large region covering the aromatic ring. The calculated data further revealed that aminoalkyl substitution at the N5-position of the heterocycle and a secondary or tertiary aliphatic aminoalkyl nitrogen atom with a two or three carbon bridge to the heteroaromatic nitrogen (N5) are required for potent "resistance reversal activity". Lowest energy conformers for 1-17 were determined and optimized to afford stereoelectronic properties such as molecular orbital energies, electrostatic potentials, atomic charges, proton affinities, octanol-water partition coefficients (log P), and structural parameters. For 1-17, fairly good correlation exists between resistance reversal activity and intrinsic basicity of the nitrogen atom at the tricyclic ring system, frontier orbital energies, and lipophilicity. Significantly, nine out of 11 of a group of structurally diverse CQ-resistance reversal agents mapped very well on the 3D QSAR pharmacophore model.  相似文献   

13.
峰峰肥煤的固体高分辨核磁共振研究   总被引:4,自引:1,他引:3  
用固体,CP,CP/MASTOSS和偶极去相等实验技术对我国峰峰肥煤在不同处理阶段所得的三个固体样品进行了分析,得到了十二种煤的结构参数,并计算了三个样品的芳得族团大小,获得了各个样品的结构特点2及变化规律。  相似文献   

14.
Silicon (Si), germanium (Ge), tin (Sn), and lead (Pb) clusters mixed with a group-4 transition metal atom [M = titanium (Ti), zirconium (Zr), and hafnium (Hf)] were generated by a dual-laser vaporization method, and their properties were analyzed by means of time-of-flight mass spectroscopy and anion photoelectron spectroscopy together with theoretical calculations. In the mass spectra, mixed neutral clusters of MSi(16), MGe(16), and MSn(16) were produced specifically, but the yield of MPb(16) was low. The anion photoelectron spectra revealed that MSi(16), MGe(16), and MSn(16) neutrals have large highest occupied molecular orbital-lowest unoccupied molecular orbital gaps of 1.5-1.9 eV compared to those of MPb(16) (0.8-0.9 eV), implying that MSi(16), MGe(16), and MSn(16) are evidently electronically stable clusters. Cage aromaticity appears to be an important determinant of the electronic stability of these clusters: Calculations of nucleus-independent chemical shifts (NICSs) show that Si(16)(4-), Ge(16)(4-), and Sn(16)(4-) have aromatic characters with negative NICS values, while Pb(16)(4-) has an antiaromatic character with a positive NICS value.  相似文献   

15.
Direct molecular orbital-molecular dynamics (MO-MD) calculation was applied to diffusion processes of the Li atom on a model surface of amorphous carbon and compared with the diffusion mechanism of Li+ ion. A carbon sheet composed of C96H24 was used as the model surface. The total energy and energy gradient on the full dimensional potential energy surface of the LiC96H24 system were calculated at each time step in the trajectory calculation. The optimized structure, where the Li atom is located at the center of mass of the model surface, was used as the initial structure at time zero. Simulation temperatures were chosen in the range of 200-1250 K. The dynamics calculations showed that the Li atom vibrates around the initial position below 250 K, and it moves above 300 K. At middle temperature, the Li atom translates freely on the surface. At higher temperature (1000 K), the Li atom moves from the center to edge region of the model surface and is trapped in the edge. The activation energy calculated for the Li atom is larger than that for the Li+ ion. This difference is due to the fact that the Li atom diffuses together with an unpaired electron on the carbon surface. The diffusion mechanism of the Li atom was discussed on the basis of the theoretical results.  相似文献   

16.
Detonation nanodiamonds (NDs) were studied by time‐of‐flight mass spectrometry (TOF MS). The formation of singly charged carbon clusters, C, with groups of clusters at n = 1–35, n ∼160–400 and clusters with n ∼8000 was observed. On applying either high laser energy or ultrasound, the position and intensity of the maxima change and a new group of clusters at n ∼70–80 is formed. High carbon clusters consist of an even number of carbons while the percentage of odd‐numbered clusters is quite low (≤5–10%). On increasing the laser energy, the maximum of ionization (at n ∼200 carbons) is shifted towards the lower m/z values. It is suggested that this is mainly due to the disaggregation of the original NDs. However, the partial destruction of NDs is also possible. The carbon clusters (n ∼2–35) are partially hydrogenated and the average value of the hydrogenation was 10–30%. Trace impurities in NDs like Li, B, Fe, and others were detected at high laser energy. Several matrices for ionizing NDs were examined and NDs themselves can also be used as a matrix for the ionization of various organic compounds. When NDs were used as a matrix for gold nanoparticles, the formation of various gold carbides AumCn was detected and their stoichiometry was determined. It was demonstrated that TOF MS can be used advantageously to analyze NDs, characterize their size distribution, aggregation, presence of trace impurities and surface chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Summary Plasma-based Secondary Neutral Mass Spectrometry (SNMS) as a depth-resolving technique was examined for the first time as a method for the quantitative analysis of heterogeneously distributed organic compounds in environmental material. Using argon ion bombardment (340 eV, 2 mA/cm2) SNMS was applied to a variety of organic compounds. Aliphatic and aromatic hydrocarbons as well as organic compounds with heteroelements yielded mass spectra with predominant atomic signals of carbon and all other elements composing the organic compound. Except for molecularly bound chlorine and nitrogen these signals were found to be governed primarily by atomic ionization probabilities, a prerequisite for elemental quantitation with low matrix dependence. For oxygen as one of these elements matrix dependent variations of the relative detection factor of ±40% were obtained in agreement with average deviations reported for alloy samples. The organic character of the samples is manifested in the appearance of CmHn clusters with relative yields declining with increasing number of atoms. The CH signal turned out to be proportional to the hydrogen content regardless of the molecular structure of the compound. This is of analytical importance because low mass separation usually hampers reliable detection of atomic hydrogen with quadrupole mass filters. Other heteroelemental clusters were not detected in significant amounts.  相似文献   

18.
α,β‐Unsaturated esters have been employed as substrates in iridium‐catalyzed asymmetric hydrogenation. Full conversions and good to excellent enantioselectivities (up to 99 % ee) were obtained for a broad range of substrates with both aromatic‐ and aliphatic substituents on the prochiral carbon. The hydrogenated products are highly useful as building blocks in the synthesis of a variety of natural products and pharmaceuticals.  相似文献   

19.
Fast atom bombardment mass spectra of cationic iridium(III) and rhodium(III) coordination complexes (M+Cl2L2, X?; where the ligand L is a dinitrogenous aromatic system) have been obtained with thioglycerol, glycerol or tetraglyme as a matrix. Two kinds of reactions, initiated by particle bombardment, have been discovered between these complexes and the matrix. First, with thioglycerol one or two chlorine atoms are substituted by a thioglycerol radical, more rapidly for rhodium compounds; secondly, when the ligand L possesses a diazo function, this function is hydrogenated depending on the ability of the matrix to generate hydrogen radicals by bombardment.  相似文献   

20.
Characterization of the structural and electronic properties of binary iron-carbon clusters composed by six iron atoms and with up to nine carbon atoms was carried out with density functional theory calculations. Neutral, cations (q = +1), and anions (q = −1), some of them experimentally detected, were studied. The formation of dimers and trimers of carbon atoms over the iron surface were preferred. Moreover, some large carbon chains, with up to five atoms, were determined. High spin states emerged for the ground states, with multiplicities above 16, for all clusters independently of the number of carbon atoms attached to the iron core. All neutral clusters were stable because fragmentation (into carbon chains), dissociation (of a single carbon atom), and detachment of all carbons need high amounts of energy. Reactive species were defined by small HOMO-LUMO gaps. Charge transfer, to the carbon atoms, increased as the carbon content increased, producing, for some cases, an even-odd behavior for the magnetic moment of the Fe6Cn particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号