首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Yang MH  Thirupathi P  Lee KH 《Organic letters》2011,13(19):5028-5031
Synthesis of a novel pyrene derivative sensor (Py-Met) based on amino acid and its fluorescent behavior for Hg(II) in water was investigated. Upon Hg(II) binding, the Py-Met-bearing sulfonamide group exhibited a considerable excimer emission at 480 nm along with a decrease of monomer emission at 383 nm. Py-Met allows a selective and sensitive ratiometric detection of Hg(II) without any interference from other metal ions.  相似文献   

2.
A ratiometric fluorescence probe for selective visual sensing of Zn2+   总被引:1,自引:0,他引:1  
A simple ratiometric fluorescence probe based on vinylpyrrole end-capped bipyridine for the visual sensing of Zn2+ under aqueous physiological pH (6.8-7.4) is described. The fluorophores 3a-c showed strong emission around 537 nm in acetonitrile with a quantum yield of 0.4. In buffered (HEPES, pH 7.2) acetonitrile-water mixture (9:1 v/v), titration of transition metal salts to 3c showed strong quenching of the emission at 547 nm except in the case of Zn2+, which resulted in a red-shifted emission at 637 nm. Alkali and alkaline earth metal salts could not induce any considerable changes to the emission behavior of 3a-c. The binding of Zn2+ was highly selective in the presence of a variety of other metal ions. Though Cu2+ quenches the emission of 3c, in the presence of Zn2+, a red emission prevails, indicating the preference of 3c toward Zn2+. Job plot and Benesi-Hildebrand analysis revealed a 1:1 complexation between the probe and the metal ion. The selective visual sensing of Zn2+ with a red emission is ideally suited for the imaging of biological specimens.  相似文献   

3.
Two newly synthesized pyrenylcyclam dendrons (1 and 2) exhibit a new emission band centered at 450 nm when coordinated with copper triflate. Observed fluorescence shifts induced by coordinative metalation indicate an unusual intramolecular charge transfer from a pyrenyl excited state to the coordinated metal ion that competes with pyrene excimer formation. This interaction likely proceeds by photoexcitation of pi-complex of the appended arene, followed by intramolecular charge transfer within the dendritic 1:1 cyclam/metal complex, effecting reduction of the bound Cu(II) metal ion. The appended dendritic groups not only decrease the equilibrium binding constant with Cu(II) but also participate in a new excited-state pathway as an alternative to energy-dissipative excimer formation.  相似文献   

4.
Ni(2+)-induced intramolecular excimer formation of a naphthalene-based novel fluorescent probe, 1-[(naphthalen-3-yl)methylthio]-2-[(naphthalen-6-yl)methylthio]ethane (L), has been investigated for the first time and nicely demonstrated by excitation spectra, a fluorescence lifetime experiment, and (1)H NMR titration. The addition of Ni(2+) to a solution of L (DMSO:water = 1:1, v/v; λ(em) = 345 nm, λ(ex) = 280 nm) quenched its monomer emission, with subsequent enhancement of the excimer intensity (at 430 nm) with an isoemissive point at 381 nm. The fluorescence lifetime of free L (0.3912 ns) is much lower than that of the nickel(2+) complex (1.1329 ns). L could detect Ni(2+) as low as 1 × 10(-6) M with a fairly strong binding constant, 2.0 × 10(4) M(-1). Ni(2+)-contaminated living cells of plant origin could be imaged using a fluorescence microscope.  相似文献   

5.
A new thiacalix[4]arene derivative 2 of 1,3-alternate conformation possessing two pyrene groups has been synthesized and examined for its cation recognition abilities towards different cations such as lithium, sodium, potassium, nickel, zinc, cadmium, silver, mercury, lead and copper by fluorescence spectroscopy. In CH3CN/CH2Cl2 (1:1), the presence of Cu(II) induces the formation of a 1:2 ligand/metal complex, which exhibits increasing monomer emission at 376 nm at the expense of the fluorescent excimer emission of 2 centered at 476 nm. In the presence of K+, the intensity of the excimer emission increases along with the formation of a new blue shifted band at 435 nm which corresponds to a static dimer. The compound behaves as a fluorescent molecular switch upon chemical input of Cu2+ and K+.  相似文献   

6.
[reaction: see text] A new fluorogenic cone calix[4]triazacrown-5 (1) bearing two pyrene amide groups and its structural analogue 2 have been prepared. Excited at 343 nm, 1 and 2 reveal excimer emissions at 448 and 472 nm, respectively. When heavy metal ions such as Pb(2+) and Co(2+) are bound to 1, the fluorescence intensities of both monomer and excimer are quenched whereas H bonding-assisted F(-) binding to 1 gives rise to a quenched monomer emission with little excimer emission change.  相似文献   

7.
A fluorescent probe, PyCalix, which has two pyrene moieties at the lower rim of a calix[4]arene fixed in the cone conformation was synthesized and its complexation behavior with alkali and alkaline earth cations was studied by fluorescence spectrometry. The compound showed intramolecular excimer emission at approximately 480 nm in the fluorescence spectra. Upon complexation with alkaline earth metal cations, a decrease of excimer emission was observed. The decrease of excimer emission was accompanied by an increase of monomer emission of pyrenes at 397 nm. The order of complexation constants of PyCalix with metal ions was Sr(+ approximately Ca2+ > Ba2+ > Mg2+ > K+ > Na+ > Cs+ for all reagents. PyCalix doped polyvinyl chloride (PVC) membrane was fabricated and our results showed that this membrane can be used for selective detection of Sr2+.  相似文献   

8.
A novel calix[4]arene-based chemosensor 1 based on Hg2+-induced fluorescence resonance energy transfer (FRET) was synthesized, and its sensing behavior toward metal ions was investigated by UV/vis and fluorescence spectroscopies. Addition of Hg2+ to a CH3CN solution of 1 gave a significantly enhanced fluorescence at approximately 575 nm via energy transfer (FRET-ON) from the pyrenyl excimer to a ring-opened rhodamine moiety. In contrast, addition of Al3+ induced a distinct increase of pyrenyl excimer emission ( approximately 475 nm), while no obvious FRET-ON phenomenon was observed. Different binding behaviors of 1 toward Hg2+ and Al3+ were also proposed for the interesting observation.  相似文献   

9.
We have investigated the formation of metal complexes between Zn2+ and two derivatives, 1 and 2, of the well-known 1,4,8,11-tetraazacyclotetradecane (cyclam) ligand. Compound 1 is 1,4,8,11-tetrakis(naphthylmethyl) cyclam, and compound 2 is a dendrimer consisting of a cyclam core with appended 12 dimethoxybenzene and 16 naphthyl units. Compound 1 exhibits an emission band with a maximum around 480 nm, assigned to the formation of exciplexes between amine and excited naphthyl units. Dendrimer 2 exhibits three types of weak emission bands, assigned to naphthyl localized excited states (lambdamax = 337 nm), naphthyl excimers (lambdamax ca. 390 nm), and naphthyl-amine exciplexes (lambdamax = 480 nm). In CH3CN-CH2Cl2 1:1 v/v, titration of ligand 1 with Zn2+ causes the disappearance of the exciplex emission and the appearance of a strong naphthyl localized fluorescence; the titration plot is linear and reaches a plateau for a 1:1 stoichiometry, showing that a highly stable [Zn(1)]2+ complex is formed. In the case of 2, titration with Zn2+ causes the disappearance of the exciplex band, with a concomitant increase in the excimer and naphthyl localized emissions; the titration plot is again linear, but in this case it reaches a plateau for a 2:1 stoichiometric ratio, showing the unexpected formation of a [Zn(2)2]2+ complex. Such an unexpected stoichiometry for the complex of the dendritic ligand has been fully confirmed by 1H NMR titrations. The results obtained show that the dendrimer branches not only do not hinder, but in fact favor coordination of cyclam to Zn2+.  相似文献   

10.
The effect of triplet sensitizers, benzophenone and anthraquinone and metal acetylacetonates [Co(II, III), Cu, Sn, and Ni] on the photodegradation of polyurethane was examined. Ultravioletvisible (UV-V) absorption spectra, gel formation, and luminescence emission of the polymer before and after irradiation were measured. Changes in UV-V absorption of the polymer and the formation of an insoluble fraction in the polymer were accelerated in the presence of the triplet sensitizers, and (Co(II, III)), Cu, and Sn acetylacetonates. Unirradiated polyurethane was excited by irradiation at 290 and 346 nm, and emitted light at 310 and 420 nm. After 1/2 hr irradiation emission of luminescence was observed at 430 nm, excitation at 290 and 346 nm; after 2hr irradiation at 530 nm, excitation at 420 nm was observed. The results suggest that photodegradation of the polyurethane proceeds via excited triplet states forming excimer between the polymers at the initial stage and exciplexes between the polymer and degradation products or intermediates after a certain irradiation.  相似文献   

11.
A new method for assessing the topology of metallosupramolecular assemblies using pyrene-appended ligands is reported. Two potentially tetradentate ligands containing one (L(1)) and two (L(2)) terminal pyrene moieties were synthesised and their complexes with Cu(+) and Cd(2+) were characterised. Photophysical measurements demonstrate that in [Cu(2)(L(1))(2)](2+), [CdL(1)](2+) and [Cu(2)(L(2))(2)](2+) the emission spectra are dominated by monomeric emission but in the cadmium complex of L(2) (where the pyrene units are in close proximity) a quenching of the luminescence coupled with weak emission at 540 nm is indicative of excimer formation.  相似文献   

12.
An azamacrocyclic ligand (L) containing two anthracene (AN) fragments connected through two triethylenetetramine bridges has been synthesized, in which each of the bridges can coordinate with one metal cation. The effects of pH and metal cations (Zn2+ and Cd2+) on the emission properties of L were studied in water. Without metal cations, L does not show any emission at basic pH values. The addition of Zn2+ leads to the production of excimer emission, which is due to a static excimer formed by direct excitation of the intramolecular ground-state dimer of the bipolar AN fragments that approach each other by Zn2+ binding. In contrast, Cd2+ addition does not result in excimer emission because the Cd2+-AN pi complex, formed by donation of a pi electron of the AN fragments to the adjacent Cd2+, suppresses pi-stacking interactions of the AN fragments. The most notable feature is the appearance of excimer emission controlled by the input sequence of metal cations: Zn2+-->Cd2+ sequential addition (each one equivalent) allows excimer emission, whereas the reverse sequence (Cd2+-->Zn2+) does not. In the Zn2+-->Cd2+ sequence, Cd2+ coordination is structurally restricted by the first Zn2+ coordination with the other polyamine bridge, leading to the formation of a weak Cd2+-AN pi complex. In contrast, for the reverse sequence, the first Cd2+ coordination forms a stable Cd2+-AN pi complex, which is not weakened by sequential Zn2+ coordination, resulting in no excimer emission.  相似文献   

13.
Single and multiple photon processes are identified in the 193 nm excimer laser photolysis of CS2. CS(X1Σ+, υ = 1 to 5, J = 5 to 45) is observed by dye laser induced fluorescence of the A1Π ↔ ; X1Σ+ transition, following the single photon 193 nm photolysis of CS2. Multiple photon 193 nm generation of CS fragment emission from 620 to 170 nm is also reported. A partial assignment of the emission spectrum identifies fluorescence from the CS A′1Σ+ and A1Π states.  相似文献   

14.
The photophysical properties of bis-1,8-naphthalimide (NI-L-NI) dyads with different linkers ( L = -C 3H 6-, -C 4H 8-, -C 6H 12-, -C 8H 16-, and -C 9H 18-) as well as the reference NI derivative (NI-C 7H 15) were investigated in CH 3CN and H 2O/CH 3CN (v/v = 1:9). The normal fluorescence peak of (1)NI*-L-NI was observed at 379 nm together with a broad emission at longer wavelength both in aprotic CH 3CN and in H 2O/CH 3CN, which is assigned to an excimer, (1)(NI-L-NI)*. The excimer emission maximum was blue-shifted with increasing length of the linker. The photoinduced electron-transfer process of NI-L-NI was also investigated in both solvents by using nanosecond-laser flash photolysis. The T 1-T n absorption band for (3)NI*-L-NI was observed around 470 nm in both solvents. In H 2O/CH 3CN, NI-L-NI is solvated with H 2O in the ground state to exist as solvated NI-L-NI. In the excited triplet state, the NI radical anion (NI (*-)) was generated via the intramolecular quenching of (3)NI*-L-NI by another NI moiety. The solvated NI (*-)-L-NI may undergo the proton abstraction process to give NI(H) (*)-L-NI, which can be confirmed by the transient absorption band at 410 nm. This band was not observed in pure aprotic CH 3CN.  相似文献   

15.
A few novel anthracene-based cyclophanes CP-1 , CP-2 and CP-3 were synthesized and their interactions with DNA were investigated employing photophysical and biophysical techniques. In methanol and acetonitrile, these systems exhibited optical properties characteristic of the anthracene chromophore. However, in the aqueous medium, the symmetric cyclophane CP-1 showed a dual emission having λmax at 430 and 550 nm, due to the monomer and excimer, respectively. In contrast, the cyclophanes CP-2 and CP-3 in the aqueous medium showed structured anthracene absorption and emission spectra similar to those obtained in methanol and acetonitrile. DNA binding studies indicate that CP-1 undergoes efficient nonclassical partial intercalative interactions with DNA resulting in the exclusive formation of a sandwich-type excimer having enhanced emission intensity and lifetimes. The cyclophane CP-2 having one anthracene moiety exhibited nonclassical intercalative binding with DNA, albeit with less efficiency compared with CP-1 . In contrast, CP-3 , having sterically bulky viologen bridging group showed DNA electrostatic as well as groove binding interactions. These results demonstrate that the nature of the bridging unit plays an important role in the binding mode of the cyclophanes with DNA and in the formation of the novel sandwich-type excimer.  相似文献   

16.
[graph: see text] A new probe, 1,4-bis(1-pyrenyl)-2,3-diaza-1,3-butadiene, selectively senses Hg2+ and Cu2+ through two different channels: the yellow-deep-pink color change and the enhancement of the fluorescence with the red shift of the excimer emission, which can visually be discernible by a green fluorescence in the presence of Hg2+ and an orange fluorescence in the presence of Cu2+.  相似文献   

17.
Variations in the ratio of monomer/excimer emissions from pyrenyl groups bound to a calix[4]arene through facing carboxamidomethyl substituents have been investigated in H2O/CH3CN mixtures. Above a level of 50% H2O, monomer emission declines and the excimer emission concomitantly increases. DFT calculations support the argument that disruption of intramolecular NHO bonds by water results in a geometry, which favors contact of the pyrene units and thus a strong excimer emission. Addition of Fe(III) to a H2O/CH3CN (4:1, v/v) solution of 1 at pH 6.1 quenches both monomer and excimer emissions through electron transfer (eT) from excited pyrene to the metal ion.  相似文献   

18.
The new quadridentate bischelating ligands 2 and 3 display in solution the typical absorption and emission properties expected for naphthalenediimide derivatives. Spectrophotometric studies show that systems 2 and 3 interact with Zn(II), Cd(II) and Cu(I) in CHCl3 or MeCN according to an apparent 1:1 stoichiometry. Molecular modelling, ESI-MS and 1H NMR experiments indicate that the complex species formed in the presence of stoichiometric amounts of metal ion are nonhelical [2 + 2] adducts. The metal-induced self-assembling process is signalled by an intense excimer-type emission caused by the intramolecular interaction of two naphthalenediimide subunits that face each other in the [2 + 2] adduct, as shown by molecular modelling studies. In the presence of excess metal ion, a disassembling process takes place, leading to a dinuclear complex with a 2:1 metal/ligand stoichiometry, in which the intramolecular excimer is no longer allowed to form because the interaction between the naphthalenediimide subunits has been lost. Thus, the overall metal-induced assembling/disassembling process is signalled by the appearance and disappearance of the excimer band in the emission spectrum.  相似文献   

19.
A photoinduced charge transfer (PCT)-based 1,3-alternate calix[4]crown fluoroionophore containing two cation recognition sites, a crown ether ring and two facing pyreneamide groups, is synthesized. Upon addition of K+, Pb2+, or Cu2+, wavelength changes are observed in both the fluorescence and absorption spectra, but with different binding modes. With K+, fluorescence emissions of the ligand scarcely change, while addition of Pb2+ or Cu2+ produces a remarkable change in both the excimer and monomer emissions. The observed data indicate that the metal cation is encapsulated in the crown-5 ring for K+ and by the two facing amide groups in the latter case, which is verified by a metal ion exchange experiment. The wavelength shifts in both fluorescence and absorption spectra upon addition of Cu2+ show that, in contrast to Pb2+, Cu2+ interacts with the nitrogen atoms of the amide groups, resulting in a PCT mechanism.  相似文献   

20.
As an effort to design selective fluorescent sensors toward Ca2+, Zn2+ and Cd2+, synthetic and fluorometric studies were performed on four bichromophores, each of which consists of two naphthyl or methynaphthyl units (1- and 2-isomers) linked with a diethylenetriaminepentaacetate (DTPA) chain. Every bichromophore exhibits naphthalene-monomer emission at 370 nm and excimer emission at 405 nm. Emission intensities show sensitive pH dependence, from which protonation constants were determined. Fluorometric titrations with the metal ions were performed at the physiological pH and the conditional formation constants were determined. Naphthyl rings define the stoichiometry and stability of the complexes. The insertion of CH2 spacer intensifies the emission and enhances the selective response to metal ions: the excimer emission is strengthened by 70?100 % with Cd2+ coordination, weakened by 60 % with Zn2+, and insensitive to Ca2+. The high response of methylnaphthyl bichromophores to Cd2+ is advantageous in fluorometric analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号